

# UNIVERSIDADE FEDERAL DO PARÁ - UFPA NÚCLEO DE ALTOS ESTUDOS AMAZÔNICOS - NAEA PROGRAMA DE PÓS-GRADUAÇÃO EM DESENVOLVIMENTO SUSTENTÁVEL DO TRÓPICO ÚMIDO (PPGDSTU/NAEA/UFPA)

# ARTHUR CEZAR ANAISSI DE MORAES

ANALISE DE EFICIÊNCIA TÉCNICA DA SEGURANÇA PÚBLICA NO COMBATE AO CRIME DE HOMICÍDIO NOS MUNICÍPIOS DOS ESTADOS FEDERADOS DA AMAZÔNIA LEGAL

# ARTHUR CEZAR ANAISSI DE MORAES

# ANALISE DE EFICIÊNCIA TÉCNICA DA SEGURANÇA PÚBLICA NO COMBATE AO CRIME DE HOMICÍDIO NOS MUNICÍPIOS DOS ESTADOS FEDERADOS DA AMAZÔNIA LEGAL

Tese apresentada ao Programa de Pós-Graduação em Desenvolvimento Sustentável do Trópico Úmido do Núcleo de Altos Estudos Amazônicos da Universidade Federal do Pará, em cumprimento às exigências para obtenção do grau de Doutor em Ciências do Desenvolvimento Socioambiental.

Orientador: Prof. Dr. Durbens Martins Nascimento Coorientador: Prof. Dr. Ricardo Bruno Nascimento dos Santos

Dados Internacionais de Catalogação na Publicação (CIP) de acordo com ISBD Sistema de Bibliotecas da Universidade Federal do Pará Gerada automaticamente pelo módulo Ficat, mediante os dados fornecidos pelo (a) autor(a).

M827a

Moraes, Arthur Cezar Anaissi de Moraes

Análise de Eficiência Técnica da Segurança Pública no Combate ao Crime de Homícidio nos Municípios dos Estados Federados da Amazônia Legal / Arthur Cezar Anaissi de Moraes Moraes. — 2019.

249 f.: il. color.

Orientador (a): Prof. Dr. Durbens Martins Nascimento Nascimento

Coorientador (a): Prof. Dr. Ricardo Bruno Nascimento dos Santos

Tese (Doutorado) - Programa de Pós-Graduação em Desenvolvimento Sustentável do Trópico Úmido, Núcleo de Altos Estudos Amazônicos, Universidade Federal do Pará, Belém, 2019.

- 1. Economia do Crime. 2. Homicídio. 3. Segurança Pública.
- 4. DEA Análise de Envoltórios de Dados. I. Título.

CDD 330

### ARTHUR CEZAR ANAISSI DE MORAES

# ANALISE DE EFICIÊNCIA TÉCNICA DA SEGURANÇA PÚBLICA NO COMBATE AO CRIME DE HOMICÍDIO NOS MUNICÍPIOS DOS ESTADOS FEDERADOS DA AMAZÔNIA LEGAL

Tese apresentada ao Programa de Pós-Graduação em Desenvolvimento Sustentável do Trópico Úmido do Núcleo de Altos Estudos Amazônicos da Universidade Federal do Pará, como requisito para obtenção do grau de Doutor em Ciências: Desenvolvimento Socioambiental.

Orientador: Prof. Dr. Durbens Martins Nascimento Coorientador: Prof. Dr. Ricardo Bruno Nascimento dos Santos

Aprovado: Belém (PA), 26 de abril de 2019

# Banca Examinadora: Prof. Dr. Durbens Martins Nascimento Orientador: PPGDSTU/NAEA/UFPA Prof. Dr. Ricardo Bruno Nascimento dos Santos Co-orientador: ICSA/UFPA Prof. Dr. Hisakhana Pahoona Corbin Examinador Interno: PPGDSTU/NAEA/UFPA Prof. Dr. Josep Pont Vidal Examinador Interno: PPGDSTU/NAEA/UFPA Prof. Dr. Jarsen Luís Castro Guimarães Examinador Externo: PPGCS/UFOPA Prof. Dr. Edilan Santana Quaresma Examinador Externo: PPGCS/UFOPA

### **AGRADECIMENTOS**

Primeiramente, a Deus, pelo dom da vida. Fonte inesgotável de carinho, amor e fé. Concretude espiritual divina para grandes conquistas e coragem para idealização de nossos desafios.

A Universidade Federal do Pará - UFPA, representada pelo Núcleo de Altos Estudos da Amazônia (NAEA/UFPA), verdadeiro celeiro institucional de notável saber. Fonte plural da pesquisa aplicada e interdisciplinaridade na Região Amazônica, Brasil e Mundo.

A CAPES, pelo fomento institucional de bolsas de estudos. Grande incentivo acadêmico, tão necessário ao estudante profissional. Muito obrigado.

A minha sólida e amorosa família, nesta inserida minha querida esposa Roberta Braga Fernandes de Moraes, mulher amorosa, respeitosa e fiel a seus princípios familiares e conjugais. Aos nossos frutos do amor, nossos filhos: Arthur Cezar Anaissi de Moraes Filho e João Victor Fernandes Anaissi de Moraes, essências genéticas de nosso viver.

Aos meus queridos pais: Carlos Alberto Carvalho de Moraes e Maria José Anaissi de Moraes, meu eterno agradecimento por tudo: pelo amor, pela acolhida incondicional na dor e no amor, por tudo que sou hoje. A minha querida irmã Aline Cristiane, seu marido Alex Braga e meu querido afilhado e sobrinho Arthur Braga, por acreditarem na minha capacidade e competência.

Ao meu dileto orientador Prof. Dr. Durbens Martins Nascimento, baluarte crítico do neoinstitucionalismo aplicado à pesquisa de defesa e segurança pública na Amazônia, grande honra participar da historia de sua vida. Grato professor.

Ao meu Coorientador Professor Dr. Ricardo Bruno, grande cientista social de associações e comprovações econométricas, estatísticas e matemáticas. Sem dúvida, propriedade intelectual comprovada e respeitada por mim. Muito obrigado professor.

Por fim, a todos aqueles que contribuíram direta e indiretamente para o êxito e finalização desta tese de doutorado. Deus abençoe a todos.

"...Os covardes morrem várias vezes antes da sua morte, mas o homem corajoso experimenta a morte apenas uma vez..." William Shakespeare (1564-1616).

### **RESUMO**

A tese delimitou como objetivo analizar a eficiência dos gastos em segurança pública no controle do crime de óbito por causas externas (homícidio) e variáveis de natureza socieconômicas nos municípios pertencentes aos Estados Federados da Amazônia Legal no período de 2002 a 2015. A metodologia utilizada consistiu em estimar um escore de eficiência técnica calculado por município e com isso estratificar por camadas de isoeficiência os resultados obtidos, delimitados desta forma: 0,01 e 0,25 (baixa eficiência), 0,25 e 0,50 (regular eficiência), 0,50 e 0,75 (eficiência média) e 0,75 e 1,00 (eficiência alta), conforme modelo de Análise de Envoltórios de Dados (DEA). As hipoteses testadas foram as seguintes: Hipótese 01: A evolução do escore de eficiência total geral (eftg), para o controle do óbito de causas externas (homicídio), apresenta diferentes magnitudes quantitativas e qualitativas correlacionadas à natureza socioeconômica dos municípios pertencentes à Amazônia Legal no período de 2002 a 2015, sendo grande parte classificada como eficiência Baixa. Hipótese 02: A evolução do escore de eficiência por tamanho populacional, para o controle do óbito de causa externa (homicídio), apresenta diferentes magnitudes quantitativas e qualitativas correlacionadas à natureza populacional dos municípios pertencentes à Amazônia Legal no período de 2002 a 2015, sendo grande parte classificadas como eficiência Alta. Os resultados obtidos, por comparação empírica da média descritiva, sinalizam que a estimação de eficiência para o controle do crime de óbito por causa externa (homícidio) é delimitada por fatores de natureza socioeconômica, institucionais e populacionais diversas, dentre os municípios pertencentes à Amazônia Legal no período de 2002 a 2015.

Palavras Chaves: Economia do Crime, Homicidio, DEA, Segurança Pública.

### **ABSTRACT**

The thesis aimed to analyze the efficiency of public security expenditures in controlling the crime of death due to external causes (homicide) and socioeconomic variables in the municipalities belonging to the Federated States of the Legal Amazon from 2002 to 2015. The methodology used consisted in estimating a technical efficiency score calculated by municipality and with this it stratified by layers of isoefficiency the obtained results, delimited in this way: 0,01 and 0,25 (low efficiency), 0,25 and 0,50 ( (efficiency), 0.50 and 0.75 (average efficiency), and 0.75 and 1.00 (high efficiency), according to the Data Envelopment Analysis (DEA) model. The hypotheses tested were as follows: **Hypothesis 01:** The evolution of the overall total efficiency score (eftg), for the control of death from external causes (homicide), presents different quantitative and qualitative magnitudes correlated with the socioeconomic nature of the municipalities belonging to the Legal Amazon in the period from 2002 to 2015, being largely classified as **Low** efficiency. **Hypothesis 02:** The evolution of the efficiency score by population size, for the control of death from external causes (homicide), presents different quantitative and qualitative magnitudes correlated to the population nature of the municipalities belonging to the Legal Amazon from 2002 to 2015, being large part classified as **High** efficiency. The results obtained by empirical comparison of the descriptive mean indicate that the efficiency estimation for the control of the crime of death due to external causes (homicide) is delimited by socioeconomic, institutional and population factors, among the municipalities belonging to the Legal Amazon in the period from 2002 to 2015.

**Key Words:** Crime Economics, Homicide, DEA, Public Security.

### LISTA DE ABREVIATURAS E SIGLAS

**ALICE WEB** Análise de Informações de Comércio Exterior.

**CAPES** Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

**DATASUS** Departamento de Informática do Sistema Único de Saúde.

**DEA** Data Envelopment Analysis.

**FAPESPA** Fundação Amazônia de Amparo a Estudos e Pesquisas.

**FINBRA** Finanças do Brasil

**GINI** Índice de Desigualdade de Renda.

**HAF** Homicídios praticados por Arma de Fogo.

**IBGE** Instituto Brasileiro de Geografia e Estatística.

MDS Ministério do Desenvolvimento Social.

MTE Ministério do Trabalho e Emprego.

**PNAD** Pesquisa Nacional por Amostra de Domicílio.

**RAIS** Relação Anual de Informações Sociais.

**RIPSA** Rede Interagencial de Informações para a Saúde.

**RMB** Região Metropolitana de Belém

**SAGI** Secretaria de Avaliação e Gestão da Informação.

**SUDAM** Superintendência de Desenvolvimento da Amazônia

**UFPA** Universidade Federal do Pará

# LISTA DE FIGURAS

| Figura 1: Área de Estudo - Amazônia Legal2 |
|--------------------------------------------|
|--------------------------------------------|

# LISTA DE TABELAS

| Tabela 1: Região Norte e Unidades da Federação: Quantitativo de municípios e área territo |    |
|-------------------------------------------------------------------------------------------|----|
| (km²), ano 2016                                                                           | 27 |
| Tabela 2: Brasil, Região Norte e Unidades da Federação: Estimativas Populacionais, ano    |    |
| 2012-2016                                                                                 |    |
| Tabela 3: Número de Estabelecimento de Ensino Fundamental: 2015 a 2016                    | 29 |
| Tabela 4: Número de Estabelecimento de Ensino Médio: 2015 a 2016                          | 30 |
| Tabela 5: Número de Estabelecimento na Educação Profissional: 2015 a 2016                 | 32 |
| Tabela 6: Hospitais por 10(dez) mil Habitantes: 2012 a 2016                               | 33 |
| Tabela 7: Postos e Centros de Saúde por 10(dez) mil Habitantes: 2012 a 2016               |    |
| Tabela 8: Taxa de Homicídios por 100(cem) mil Habitantes: 2011 a 2015                     | 35 |
| Tabela 9: População vivendo em Domicílios Próprios já Quitados (%): 2011 a 2015           |    |
| Tabela 10: População economicamente ativa: 2013 a 2015                                    |    |
| Tabela 11: Produto Interno Bruto (1.000.000 RS) a valores correntes                       |    |
| Tabela 12: Saldo da Balança Comercial: 2012 a 2016.                                       |    |
| Tabela 13: Municípios do Pará por classificação.                                          |    |
| Tabela 14: Municípios do Amazonas por classificação                                       |    |
| Tabela 15: Municípios do Acre por classificação                                           |    |
| Tabela 16: Municípios do Amapá por classificação.                                         |    |
| Tabela 17: Municípios do Maranhão por classificação.                                      |    |
| Tabela 18: Municípios de Rondônia por classificação.                                      |    |
| Tabela 19: Municípios de Roraima por classificação.                                       |    |
| Tabela 20: Municípios de Tocantins por classificação.                                     |    |
| Tabela 21: Municípios de Mato Grosso por classificação.                                   |    |
|                                                                                           |    |
| Tabela 22: Variáveis selecionadas no Modelo de Análise de Envoltório de Dados (DEA)       |    |
| Tabela 23: Eficiência do Estado do ACRE e DMU, ano 2002.                                  |    |
| Tabela 24: Eficiência do Estado do AMAZONAS e DMU, ano 2002.                              |    |
| Tabela 25: Eficiência do Estado do AMAPÁ e DMU, ano 2002.                                 |    |
| Tabela 26: Eficiência do Estado do MATO GROSSO e DMU, ano 2002.                           | 80 |
| Tabela 27: Eficiência do Estado do RONDÔNIA e DMU, ano 2002.                              |    |
| Tabela 28: Eficiência do Estado do RORAIMA e DMU, ano 2002                                |    |
| Tabela 29: Eficiência do Estado do ACRE e DMU, ano 2003.                                  |    |
| Tabela 30: Eficiência do Estado do AMAZONAS e DMU, ano 2003.                              |    |
| Tabela 31: Eficiência do Estado do AMAPÁ e DMU, ano 2003                                  |    |
| Tabela 32: Eficiência do Estado do MATO GROSSO e DMU, ano 2003                            | 84 |
| Tabela 33: Eficiência do Estado de RONDONIA e DMU, ano 2003                               |    |
| Tabela 34: Eficiência do Estado de RORAIMA e DMU, ano 2003                                |    |
| Tabela 35: Eficiência do Estado de ACRE e DMU, ano 2004                                   |    |
| Tabela 36: Eficiência do Estado de AMAZONAS e DMU, ano 2004                               |    |
| Tabela 37: Eficiência do Estado de AMAPÁ e DMU, ano 2004                                  | 87 |
| Tabela 38: Eficiência do Estado de MATO GROSSO e DMU, ano 2004                            | 88 |
| Tabela 39: Eficiência do Estado de RONDONIA e DMU, ano 2004                               | 89 |
| Tabela 40: Eficiência do Estado de RORAIMA e DMU, ano 2004                                |    |
| Tabela 41: Eficiência do Estado de ACRE e DMU, ano 2005                                   |    |
| Tabela 42: Eficiência do Estado de AMAZONAS e DMU, ano 2005                               |    |
| Tabela 43: Eficiência do Estado de AMAPÁ e DMU, ano 2005.                                 |    |
| Tabela 44: Eficiência do Estado de MATO GROSSO e DMU, ano 2005                            |    |
| Tabela 45: Eficiência do Estado de RONDÔNIA e DMU, ano 2005.                              |    |
| Tabela 46: Eficiência do Estado de RORAIMA e DMU, ano 2005                                |    |

| Tabela 47: Eficiência do Estado do ACRE e DMU, ano 2006        | 93  |
|----------------------------------------------------------------|-----|
| Tabela 48: Eficiência do Estado do AMAZONAS e DMU, ano 2006    | 94  |
| Tabela 49: Eficiência do Estado do AMAPÁ e DMU, ano 2006       | 95  |
| Tabela 50: Eficiência do Estado do MATO GROSSO e DMU, ano 2006 | 95  |
| Tabela 51: Eficiência do Estado de RONDÔNIA e DMU, ano 2006    | 97  |
| Tabela 52: Eficiência do Estado de RORAIMA e DMU, ano 2006     | 97  |
| Tabela 53: Eficiência do Estado do ACRE e DMU, ano 2007.       | 98  |
| Tabela 54: Eficiência do Estado do AMAZONAS e DMU, ano 2007    | 99  |
| Tabela 55: Eficiência do Estado do AMAPÁ e DMU, ano 2007       |     |
| Tabela 56: Eficiência do Estado do MATO GROSSO e DMU, ano 2007 | 100 |
| Tabela 57: Eficiência do Estado de RONDÔNIA e DMU, ano 2007    |     |
| Tabela 58: Eficiência do Estado de RORAIMA e DMU, ano 2007     | 102 |
| Tabela 59: Eficiência do Estado do ACRE e DMU, ano 2008.       |     |
| Tabela 60: Eficiência do Estado do AMAZONAS e DMU, ano 2008    | 103 |
| Tabela 61: Eficiência do Estado do AMAPÁ e DMU, ano 2008       |     |
| Tabela 62: Eficiência do Estado do MATO GROSSO e DMU, ano 2008 |     |
| Tabela 63: Eficiência do Estado de RONDÔNIA e DMU, ano 2008    | 106 |
| Tabela 64: Eficiência do Estado de RORAIMA e DMU, ano 2008     |     |
| Tabela 65: Eficiência do Estado do ACRE e DMU, ano 2009.       |     |
| Tabela 66: Eficiência do Estado do AMAZONAS e DMU, ano 2009    |     |
| Tabela 67: Eficiência do Estado do AMAPÁ e DMU, ano 2009       |     |
| Tabela 68: Eficiência do Estado do MATO GROSSO e DMU, ano 2009 |     |
| Tabela 69: Eficiência do Estado de RONDÔNIA e DMU, ano 2009    |     |
| Tabela 70: Eficiência do Estado de RORAIMA e DMU, ano 2009     |     |
| Tabela 71: Eficiência do Estado do ACRE e DMU, ano 2010.       |     |
| Tabela 72: Eficiência do Estado do AMAZONAS e DMU, ano 2010.   |     |
| Tabela 73: Eficiência do Estado do AMAPÁ e DMU, ano 2010       |     |
| Tabela 74: Eficiência do Estado do MATO GROSSO e DMU, ano 2010 |     |
| Tabela 75: Eficiência do Estado de RONDÔNIA e DMU, ano 2010.   |     |
| Tabela 76: Eficiência do Estado de RORAIMA e DMU, ano 2010     |     |
| Tabela 77: Eficiência do Estado do ACRE e DMU, ano 2011.       |     |
| Tabela 78: Eficiência do Estado do AMAZONAS e DMU, ano 2011    |     |
| Tabela 79: Eficiência do Estado do AMAPÁ e DMU, ano 2011.      |     |
| Tabela 80: Eficiência do Estado do MATO GROSSO e DMU, ano 2011 | 118 |
| Tabela 81: Eficiência do Estado de RONDÔNIA e DMU, ano 2011    |     |
| Tabela 82: Eficiência do Estado de RORAIMA e DMU, ano 2011     |     |
| Tabela 83: Eficiência do Estado do ACRE e DMU, ano 2012.       |     |
| Tabela 84: Eficiência do Estado do AMAZONAS e DMU, ano 2012    |     |
| Tabela 85: Eficiência do Estado do AMAPÁ e DMU, ano 2012.      |     |
| Tabela 86: Eficiência do Estado do MATO GROSSO e DMU, ano 2012 |     |
| Tabela 87: Eficiência do Estado do RONDÔNIA e DMU, ano 2012.   |     |
| Tabela 88: Eficiência do Estado do RORAIMA e DMU, ano 2012     |     |
| Tabela 89: Eficiência do Estado do ACRE e DMU, ano 2013.       |     |
| Tabela 90: Eficiência do Estado do AMAZONAS e DMU, ano 2013    |     |
| Tabela 91: Eficiência do Estado do AMAPÁ e DMU, ano 2013.      |     |
| Tabela 92: Eficiência do Estado do MATO GROSSO e DMU, ano 2013 |     |
| Tabela 93: Eficiência do Estado de RONDÔNIA e DMU, ano 2013.   |     |
| Tabela 94: Eficiência do Estado de RORAIMA e DMU, ano 2013     |     |
| Tabela 95: Eficiência do Estado do ACRE e DMU, ano 2014.       |     |
| Tabela 96: Eficiência do Estado do AMAZONAS e DMU, ano 2014.   |     |
|                                                                |     |

| TILLOTEC'S LIEVILLAMADÓ DAMI 2014                                    | 101   |
|----------------------------------------------------------------------|-------|
| Tabela 97: Eficiência do Estado do AMAPÁ e DMU, ano 2014.            |       |
| Tabela 98: Eficiência do Estado do MATO GROSSO e DMU, ano 2014       |       |
| Tabela 99: Eficiência do Estado de RONDÔNIA e DMU, ano 2014          |       |
| Tabela 100: Eficiência do Estado de RORAIMA e DMU, ano 2014.         |       |
| Tabela 101: Eficiência do Estado do ACRE e DMU, ano 2015             |       |
| Tabela 102: Eficiência do Estado do AMAZONAS e DMU, ano 2015         |       |
| Tabela 103: Eficiência do Estado do AMAPÁ e DMU, ano 2015            |       |
| Tabela 104: Eficiência do Estado do MATO GROSSO e DMU, ano 2015      |       |
| Tabela 105: Eficiência do Estado de RONDÔNIA e DMU, ano 2015         |       |
| Tabela 106: Eficiência do Estado de RORAIMA e DMU, ano 2015          |       |
| Tabela 107: Média da eficiência dos municípios da Amazônia Legal     |       |
| Tabela 108: Participação percentual das variáveis - Amazônia Legal   |       |
| Tabela 109: Média da eficiência do município de Rio Branco (AC).     |       |
| Tabela 110: Participação percentual das variáveis - Rio Branco (AC)  |       |
| Tabela 111: Média da eficiência do município de Belém (PA).          |       |
| Tabela 112: Participação percentual das variáveis - Belém (PA)       |       |
| Tabela 113: Média da eficiência do município de Manaus (AM).         |       |
| Tabela 114: Participação percentual das variáveis - Manaus (AM).     |       |
| Tabela 115: Média da eficiência do município de Macapá (AP).         | . 149 |
| Tabela 116: Participação percentual das variáveis - Macapá (AP).     | . 150 |
| Tabela 117: Média da eficiência do município de Boa Vista (RR)       |       |
| Tabela 118: Participação percentual das variáveis - Boa Vista (RR)   | . 153 |
| Tabela 119: Média da eficiência do município de Cuiabá (MT)          |       |
| Tabela 120: Participação percentual das variáveis - Cuiabá (MT)      | . 156 |
| Tabela 121: Média da eficiência do município de Palmas (TO)          | . 157 |
| Tabela 122: Participação percentual das variáveis - Palmas (TO)      |       |
| Tabela 123: Média da eficiência do município de Porto Velho (RO).    |       |
| Tabela 124: Participação percentual das variáveis - Porto Velho (RO) | . 161 |
| Tabela 125: Média da eficiência do município de São Luis (MA)        |       |
| Tabela 126: Participação percentual das variáveis - São Luis (MA)    |       |
| Tabela 127: Eficiência do Estado do MARANHÃO e DMU, ano 2002         |       |
| Tabela 128: Eficiência do Estado do PARÁ e DMU, ano 2002             | . 182 |
| Tabela 129: Eficiência do Estado do TOCANTINS e DMU, ano 2002        | . 183 |
| Tabela 130: Eficiência do Estado do MARANHÃO e DMU, ano 2003         |       |
| Tabela 131: Eficiência do Estado do PARÁ e DMU, ano 2003             |       |
| Tabela 132: Eficiência do Estado de TOCANTINS e DMU, ano 2003        |       |
| Tabela 133: Eficiência do Estado de MARANHÃO e DMU, ano 2004         |       |
| Tabela 134: Eficiência do Estado de PARÁ e DMU, ano 2004.            |       |
| Tabela 135: Eficiência do Estado de TOCANTINS e DMU, ano 2004        |       |
| Tabela 136: Eficiência do Estado de MARANHÃO e DMU, ano 2005         |       |
| Tabela 137: Eficiência do Estado de PARÁ e DMU, ano 2005.            |       |
| Tabela 138: Eficiência do Estado do TOCANTINS e DMU, ano 2005.       |       |
| Tabela 139: Eficiência do Estado do MARANHÃO e DMU, ano 2006.        |       |
| Tabela 140: Eficiência do Estado do PARÁ e DMU, ano 2006             |       |
| Tabela 141: Eficiência do Estado do TARA e DIVIO, ano 2006           |       |
| Tabela 142: Eficiência do Estado de MARANHÃO e DMU, ano 2007.        |       |
| Tabela 143: Eficiência do Estado do MAKANTAO e DMO, ano 2007         |       |
| Tabela 144: Eficiência do Estado do FARA e DMO, ano 2007             |       |
| Tabela 145: Eficiência do Estado de MARANHÃO e DMU, ano 2008         |       |
| Tabela 145. Eficiência do Estado do MARÁNHAO e DMU, ano 2008         |       |
| 1 audia 140. Efficienta do Estado do FARA e DIVIO, allo 2000         | . 414 |

| Tabela 14 | 147: Eficiência do Estado de TOCANTINS e DMU, ano | 2008 215 |
|-----------|---------------------------------------------------|----------|
| Tabela 14 | 148: Eficiência do Estado do MARANHÃO e DMU, and  | 2009 218 |
| Tabela 14 | 149: Eficiência do Estado do PARÁ e DMU, ano 2009 | 220      |
| Tabela 15 | 150: Eficiência do Estado de TOCANTINS e DMU, ano | 2009 221 |
| Tabela 15 | 151: Eficiência do Estado do MARANHÃO e DMU, and  | 2010 224 |
| Tabela 15 | 152: Eficiência do Estado do PARÁ e DMU, ano 2010 | 226      |
| Tabela 15 | 153: Eficiência do Estado de TOCANTINS e DMU, ano | 2010 227 |
| Tabela 15 | 154: Eficiência do Estado do MARANHÃO e DMU, and  | 2011 229 |
| Tabela 15 | 155: Eficiência do Estado do PARÁ e DMU, ano 2011 | 231      |
| Tabela 15 | 156: Eficiência do Estado de TOCANTINS e DMU, ano | 2011 233 |
| Tabela 15 | 157: Eficiência do Estado do MARANHÃO e DMU, and  | 2012 235 |
| Tabela 15 | 158: Eficiência do Estado do PARÁ e DMU, ano 2012 | 236      |
| Tabela 15 | 159: Eficiência do Estado do TOCANTINS e DMU, ano | 2012238  |
| Tabela 16 | 160: Eficiência do Estado do MARANHÃO e DMU, and  | 2013 240 |
| Tabela 16 | 161: Eficiência do Estado do PARÁ e DMU, ano 2013 | 241      |
| Tabela 16 | 162: Eficiência do Estado de TOCANTINS e DMU, ano | 2013 242 |
| Tabela 16 | 163: Eficiência do Estado do MARANHÃO e DMU, and  | 2014 244 |
| Tabela 16 | 164: Eficiência do Estado do PARÁ e DMU, ano 2014 | 245      |
| Tabela 16 | 165: Eficiência do Estado de TOCANTINS e DMU, ano | 2014 246 |
| Tabela 16 | 166: Eficiência do Estado do MARANHÃO e DMU, and  | 2015 247 |
| Tabela 16 | 167: Eficiência do Estado do PARÁ e DMU, ano 2015 | 248      |
| Tabela 16 | 168: Eficiência do Estado de TOCANTINS e DMU, ano | 2015249  |

# **SUMÁRIO**

| L  | ISTA DE ABREVIATURAS E SIGLAS                                               | 9  |
|----|-----------------------------------------------------------------------------|----|
| L  | ISTA DE FIGURAS                                                             | 10 |
| L  | ISTA DE TABELAS                                                             | 11 |
| 1. | INTRODUÇÃO                                                                  | 18 |
| 2. | PANORAMA DESCRITIVO DA ÁREA DE ESTUDO                                       | 25 |
|    | 2.2. Estimativa populacional                                                | 27 |
|    | 2.3. Número de Estabelecimento de Ensino Fundamental                        | 28 |
|    | 2.4. Número de Estabelecimento de Ensino Médio                              | 29 |
|    | 2.5. Número de Estabelecimento na Educação Profissional                     | 31 |
|    | 2.6. Hospitais por 10 mil Habitantes                                        | 32 |
|    | 2.7. Postos e Centros de Saúde por 10 mil Habitantes                        | 33 |
|    | 2.9. Taxa de Homicidio por 100(cem) mil Habitantes: 2011 a 2015             | 34 |
|    | 2.10. População vivendo em Domicílios Próprios já Quitados (%): 2011 a 2015 | 36 |
|    | 2.11. População Economicamente Ativa: 2013 a 2015                           | 37 |
|    | 2.12. Produto Interno Bruto (1.000.000 RS) a valores correntes              | 39 |
|    | 2.13. Saldo da Balança Comercial: 2012 a 2016.                              | 40 |
| 3. | REFERENCIAL TEÓRICO                                                         | 42 |
|    | 3.1. Contribuições Econômicas e a Literatura Internacional                  | 42 |
|    | 3.2. Contribuições Econômicas do Crime no Brasil                            | 45 |
|    | 3.3. Abordagem Ecológica e Espacial da Criminalidade                        | 48 |
|    | 3.4. Teoria da Desorganização Social                                        | 54 |
|    | 3.5. Teoria do Controle Social                                              | 55 |
|    | 3.6. Teoria da Associação Diferencial ou Teoria do Aprendizado Social       | 56 |
|    | 3.7. Abordagem da Eficiência Técnica no Combate a Criminalidade             | 57 |
|    | 3.8. Modelos teóricos                                                       | 59 |
|    | 3.8.1. Modelo Econômico de Becker                                           | 60 |
|    | 3.8.2. Modelo DEA                                                           | 64 |
| 4. | METODOLOGIA                                                                 | 68 |
|    | 4.1. Divisão da amostra e aplicação do DEA                                  | 69 |
|    | 4.2. Descrição das Variáveis.                                               | 75 |
| 5. | DEMONSTRAÇÕES DOS RESULTADOS DE EFICIÊNCIA TÉCNICA (DEA)                    | 78 |
|    | 5.1. Eficiência, ano base 2002.                                             | 78 |
|    | 5.2. Eficiência, ano base 2003.                                             | 82 |
|    | 5.3. Eficiência, ano base 2004.                                             | 85 |
|    | 5.4. Eficiência, ano base 2005.                                             | 89 |

| 5.5. Eficiência, ano base 2006.                                                                                            | . 93 |
|----------------------------------------------------------------------------------------------------------------------------|------|
| 5.6. Eficiência, ano base 2007.                                                                                            | . 97 |
| 5.7. Eficiência, ano base 2008.                                                                                            | 102  |
| 5.8. Eficiência, ano base 2009.                                                                                            | 106  |
| 5.9. Eficiência, ano base 2010.                                                                                            | 111  |
| 5.10. Eficiência, ano base 2011.                                                                                           | 115  |
| 5.11. Eficiência, ano base 2012.                                                                                           | 120  |
| 5.12. Eficiência, ano base 2013.                                                                                           | 124  |
| 5.13. Eficiência, ano base 2014.                                                                                           | 129  |
| 5.14. Eficiência, ano base 2015.                                                                                           | 133  |
| 6. ANÁLISE COMPARATIVA EMPÍRICA DOS RESULTADOS DE EFICIÊNCIA TÉCNICA (DEA), PRINCIPAIS DMU`S DOS ESTADOS DA AMAZÔNIA LEGAL | 138  |
| 6.1. Média das variáveis dos municípios da Amazônia Legal no período de 2002 a 2015.                                       |      |
|                                                                                                                            |      |
| 6.2.1. Estado do Acre, município de Rio Branco.                                                                            |      |
| 6.2.2. Estado do Pará, município de Belém.                                                                                 |      |
| 6.2.3. Estado do Amazonas, município de Manaus.                                                                            |      |
| 6.2.4. Estado do Amapá, município de Macapá                                                                                |      |
| 6.2.5. Estado de Roraima, município de Boa Vista.                                                                          |      |
| 6.2.6. Estado do Mato Grosso, município de Cuiabá                                                                          |      |
| 6.2.7. Estado de Tocantins, município de Palmas                                                                            |      |
| 6.2.8. Estado de Rondônia, município de Porto Velho.                                                                       |      |
| 6.2.9. Estado do Maranhão, município de São Luis                                                                           |      |
| CONCLUSÕES                                                                                                                 |      |
| REFERÊNCIAS                                                                                                                |      |
| APENDICESAPENDICE A1:                                                                                                      |      |
| APENDICE A2:                                                                                                               | 182  |
| APENDICE A3:                                                                                                               | 183  |
| APENDICE B1:                                                                                                               | 185  |
| APENDICE B2:                                                                                                               | 186  |
| APENDICE B3:                                                                                                               | 187  |
| APENDICE C1:                                                                                                               | 189  |
| APENDICE C2:                                                                                                               | 191  |
| APENDICE C3:                                                                                                               | 192  |
| APENDICE D1:                                                                                                               | 194  |
| APENDICE D2:                                                                                                               | 196  |

| APENDICE D3: | 197 |
|--------------|-----|
| APENDICE E1: | 200 |
| APENDICE E2: | 201 |
| APENDICE E3: | 203 |
| APENDICE F1: | 206 |
| APENDICE F2: | 208 |
| APENDICE F3: | 209 |
| APENDICE G1: | 212 |
| APENDICE G2: | 214 |
| APENDICE G3: | 215 |
| APENDICE H1: | 218 |
| APENDICE H2: | 220 |
| APENDICE H3: | 221 |
| APENDICE I1: | 224 |
| APENDICE I2: | 226 |
| APENDICE I3: | 227 |
| APENDICE J1: | 229 |
| APENDICE J2: | 231 |
| APENDICE J3: | 233 |
| APENDICE L1: | 235 |
| APENDICE L2: | 236 |
| APENDICE L3: | 238 |
| APENDICE M1: | 240 |
| APENDICE M2: | 241 |
| APENDICE M3: | 242 |
| APENDICE N1: | 244 |
| APENDICE N2: | 245 |
| APENDICE N3: | 246 |
| APENDICE O1: | 247 |
| APENDICE O2: | 248 |
| APENDICE O3: | 249 |

# 1. INTRODUÇÃO

A criminalidade violenta se apresenta como um fenômeno social que instiga a atenção de autores econômicos e sociais, governo e sociedade civil organizada tanto no Brasil quanto no mundo. Nos dias atuais, o fenômeno criminal violento não está restrito a países subdesenvolvidos ou àqueles em processo de desenvolvimento, no qual se insere o Brasil. Países tidos como desenvolvidos, por sua vez, deparam-se com este problema social, que a cada ano ceifa a vida de parcela de cidadãos e impõe encargos econômicos significantes representados por gastos com segurança pública, assistência social, educação, saúde, população, saneamento, Produto Interno Bruto (PIB) e urbanismo. (FINBRA, 2016).

A partir de informações do Banco de Dados do Sistema de Informações Estatísticas da Organização Mundial da Saúde (World Mortality Databases , 2016), é possível identificar um contextualizado panorama criminal violento, predatório e preponderante que sinaliza para o entendimento da formação do colapso social decadente e autofágico, que parcela da sociedade constituída está submissa e vitimizada. Neste interím, o Brasil se apresenta com Taxas de Homicídios decorrentes de Armas de Fogo (HAF) estimadas em (20,7) homicídios por 100 mil habitantes, que, por sua vez, identifica um quadro preocupante de controle social violento e desgaste criterioso de indicadores sociais, quando comparados a demais países do mundo com magnitude superior à de muitos países que não registraram HAF no ano de referência, como Islândia, Japão, República da Coreia, Luxemburgo, Escócia, Inglaterra e País de Gales (WAISELFISZ, 2016).

O alicerce teórico de entendimento desta investigação conjuntural se fundamenta na contribuição teórica proposta por Gary Becker (1968), que proposiciona condições empíricas de compreensão clara deste quadro de deterioração criminal violenta, que os países se deparam no decorrer de sua evolução histórica, desta forma, entende-se que a escolha do individuo em cometer um crime ou não, decorre de uma avaliação racional em torno dos benefícios e custos esperados pelo crime, comparados aos resultados obtidos no mercado de trabalho legal. Isto discutido com contundência por (CERQUEIRA e LOBÃO, 2004).

No entanto, o que se pretende buscar neste panorama descritivo é a interação destas variáveis socioeconômicas relacionadas à eficiência nos gastos com segurança pública para o controle ao crime de homicídio nas subunidades municipais dos estados da Amazônia Legal e as melhorias ou não nas qualificações positivas de indicadores socioeconômicas nestes

municípios influenciando no aumento ou declínio dos homicídios, tendo em vista que estes se apresentam diversificados, pois cada um possui uma peculiaridade e dinâmica própria sócio, cultural, econômica e antropológica, processo de maximização da utilidade esperada do individuo, propiciada por resultados de potenciais ganhos do ato criminoso, do valor da punição e das probabilidades de detenção e aprisionamento, em detrimento do custo de oportunidade de cometer o crime representado pelo salário alternativo do mercado de trabalho.

Conforme *Survey* apresentado por Waiselfsz (2016) no Mapa da Violência, a sistemática quantitativa do crime de homicídio decorrente de por arma de fogo HAF, nas unidades federadas do Brasil, apresente-se com vertente similar de entendimento empírico. Neste contexto, fora constatado um crescimento médio de (23,7%) no número de vítimas de HAF entre o lapso temporal pertencente à década 2004-2014, incrementando um aumento de (11,1%) nas taxas de homicídio no período estudado, não deixando de especificar que cada região do Brasil possui sua realidade social, econômica e fatores de desenvolvimento heterogêneos. Isto acaba, por ressaltar, que a exclusão e a desigualdade socioeconômica das regiões, dos estados e dos municípios resultam de uma diferenciação no padrão de vida dos brasileiros (FAJNZYLBER; ARAÚJO JUNIOR, 2001).

Por sua vez, importante inferir na discussão que existe correntes teóricas que possam ajudar a compreender melhor esta tendência crescente de criminalidade violenta, dentre tais a Teoria da Desorganização Social, que sinaliza para este fato, inferindo que tais relações violentas criminais são propiciadas por condicionantes de fatores estruturais, tais como econômico, heterogeneidade étnica, mobilidade residencial, desagregação familiar e o processo de urbanização, ou seja, fatores estruturais condicionantes que podem levar a explicar o comportamento eficiente ou não da atuação da segurança pública no combate efetivo da criminalidade violenta nos estados federados do Brasil (SAMPSON; GROVES, 1989).

A partir da leitura do Mapa da Violência (2016), identifica-se que a Região Nordeste do Brasil apresentou as maiores taxas de HAF no decorrer do lapso temporal analisado, com variação média no período de (123,7%) HAF, neste bojo o estado do Rio Grande do Norte apresentou a maior variação média no período (445,1%), estado do Ceará (314,0%), estado do Piauí (246,6%), estado de Sergipe (197,7%), estado da Bahia (179,3%), estado da Paraíba

(164%), estado de Alagoas (141,1%) e estado do Maranhão (367,0%), sendo que dentre estes estados, o único que apresentou decrescimento na variação média no período foi Pernambuco (-24,6%), (WAISELFSZ,2016).

Conforme, dados estatísticos contidos no Anuário Brasileiro de Segurança Pública (2017), alguns estados da Região Nordeste apresentaram, no período de 2015-2016, um recrudescimento nos gastos com despesas em segurança pública, em áreas de subfunções específicas: policiamento, defesa civil, informação e inteligência e demais subfunções. Esta diminuição nas despesas com segurança pública pode ser constatada nos seguintes estados: Ceará (-3,28%), Sergipe (-3,76%), Alagoas (-9,39%) e Pernambuco (-0,23%). Os demais estados da Região Nordeste tiveram incrementos em suas despesas com segurança pública no mesmo período, chamando atenção para o Estado do Piauí com (181,81%) de aumento. Por sua vez, Rio Grande do Norte (21,56%), Bahia (2,57%) e Paraíba (13,04%) e Maranhão (10,82%), conforme (ANUÁRIO BRASILEIRO DE SEGURANÇA PÚBLICA, 2017).

Em tese, o combate a este quadro autofágico de violência criminal, poderia ser explicado pela ineficiência da incapacidade do Estado de prover meios necessários e suficientes para que o cidadão pudesse ter uma vida de acordo com padrões sociais aceitáveis e morais, quanto maior o envolvimento do cidadão no seio social, assim como, quanto maior os elos entre a pessoa e a sociedade, maior tende a ser, o grau de concordância entre os indivíduos, e assim, menor as chances de cometimento de ilícitos criminais violentos. A importância da escola no comportamento individual acaba estruturar esta conquista em sociedade. As escolas proveem oportunidades e incentivos para os jovens desenvolverem uma ligação social com outros jovens e um compromisso com os comportamentos tradicionais de uma sociedade (HIRSCHI, 1969).

Inerente ao exposto acima, Waiselfsz (2016) identificou em seus resultados do *survey*, que a Região Norte do Brasil apresentou similar variação média do número de HAF para o período (120,4%). Por sua vez, o estado desta região que apresentou maior variação média foi o Amazonas (233,0%). Os demais estados apresentaram as seguintes variações médias de HAF: Estado do Pará (139,4%), Estado do Acre (136,7%), Estado do Amapá (91,9%), Estado do Tocantins (64%), Estado de Roraima (51,6%), Estado de Rondônia (16,2%).

Assim como na Região Nordeste, a Região Norte apresentou, por sua vez, um quadro similar de criminalidade e violência instalada, configurado, por apresentar, no mesmo lapso temporal, a uma diminuição percentual nos gastos com despesa em segurança pública, em áreas de subfunçoes especificas: policiamento, defesa civil, informação e inteligência e demais subfunções. Os Estados da Região Norte que apresentaram esta subtração foram: Amazonas (-5,46%), Pará (-3,80%), Acre (-6,80%), Amapá (-18,23%), sendo o mais significativo, Rondônia (-27,54%).

Contrariando esta lógica, Roraima (9,49%) e Tocantins (6,20%) foram os Estados que aumentaram seus gastos com despesa em segurança pública, conforme ANUÁRIO BRASILEIRO DE SEGURANÇA PÚBLICA (2017). Sutherland (1973) entende que a decisão do individuo de seguir o caminho criminoso pode ser influenciada, conforme a literatura, por uma série de fatores: ordem social, econômica, institucional e política, tais como: distribuição de renda, falta de acesso a serviços públicos básicos e a falta de controle da comunidade e do poder público, entre outros fatores associados que afetam a vida das pessoas inseridas num contexto social.

Similarmente, Waiselfsz (2016) identificou nestes resultados que a Região Centro-Oeste do Brasil apresentou uma variação média do número de HAF para o período (66,5%). Por sua vez, o estado desta região que apresentou maior variação média de HAF foi Goiás (100,9%). Os demais estados apresentaram as seguintes variações médias de HAF: estado do Mato Grosso (86,1%), estado do Distrito Federal (39,3%), sendo que, neste contexto, o estado de Mato Grosso do sul apresentou variação média negativa (-8,8%) no período analisado. Assim como a Região Nordeste e Norte do Brasil, a Região Centro-Oeste apresentou, no mesmo lapso temporal, uma diminuição percentual nos gastos com despesa em segurança pública, em áreas de subfunções específicas, defesa civil, informação e inteligência e demais subfunções. Os Estados da Região Centro-Oeste, que apresentaram esta diminuição foram: Distrito Federal (-3,49%) e Goiás (-7,26%).

Contrariando está tendência Mato Grosso (16,60%) e Mato Grosso do Sul (8,81%), conforme ANUÁRIO BRASILEIRO DE SEGURANÇA PÚBLICA (2017). Inerente a isto, algumas ponderações teóricas convergem para explicar esta tendência de aumento criminal, por exemplo, o processo da falta de urbanização em áreas sensíveis de cada estado ou município, isto que pode contribuir para elevar a precariedade da qualidade de vida dos

indivíduos inseridos neste meio e assim levar a um aumento das taxas de criminalidade violenta dentre os mais pobres, comprometendo por sua vez ao aperfeiçoamento eficiente da segurança pública no combate a este tipo de crime (SACHSIDA et. al. (2009); BEATO FILHO (2012)).

Waiselfsz (2016) identificou em seus resultados que a Região Sul do Brasil apresentou uma variação média do número de HAF para o período (24,1%). Por sua vez, o estado desta região que apresentou maior variação média de HAF foi Rio Grande do Sul (43,3%). Os demais estados apresentaram as seguintes variações médias de HAF: estado de Santa Catarina (30,8%) e estado do Paraná (8,4%).

Diferentemente, das Regiões Nordeste, Norte e Centro-Oeste do Brasil. Alguns Estados da Região Sul apresentaram, no mesmo lapso temporal, um aumento percentual nos gastos com despesa em segurança pública, em áreas de subfunçoes específicas, defesa civil, informação e inteligência e demais subfunçoes. Os Estados da Região Sul são: Rio Grande do Sul (0,34%) e Paraná (6,52%). Sendo que Santa Catarina (-0,15%) apresentou variação negativa nestes gastos com despesa em segurança pública, conforme ANUÁRIO BRASILEIRO DE SEGURANÇA PÚBLICA (2017).

Destarte a este quadro, Ehrlich (1973) incrementa a análise de Becker (1968) sobre as causas da criminalidade, que atribui o efeito da distribuição de renda sobre o crime, ao considerar que um maior nível de desigualdade de renda na sociedade estimularia a entrada de indivíduos de classe mais pobres na criminalidade. Por sua vez, Entorf e Spengler (2000), entendem que sociedades que possuem elevados índices de desigualdade de renda, os indivíduos pertencentes a estratos de rendas mais desvantajosos de distribuição de renda teriam menos oportunidades no mercado de trabalho, com isto, estes indivíduos estariam mais dispostos a cometerem delitos.

Diferente deste quadro acima, Waiselfsz (2016) identificou nos resultados do survey que a Região Sudeste do Brasil fora a única que apresentou variação média negativa de HAF para o período (-35,7%). Por sua vez, o estado desta região que apresentou maior variação média negativa de HAF fora São Paulo (-53,7%) e Rio de Janeiro (-42,2%). Os demais estados apresentaram as seguintes variações médias de HAF: Estado do Espirito Santo (8,6%) e Estado de Minas Gerais (2,5%).

Destoante a isto, fora a Região Sul do Brasil a única dentre as outras Regiões, onde todos os Estados apresentaram, no mesmo lapso temporal, uma diminuição percentual nos gastos com despesa em segurança pública, em áreas de subfunções específicas, defesa civil, informação e inteligência e demais subfunções. Os Estados da Região Sudeste são: São Paulo (-10,22%), Rio de Janeiro (-3,07%), Espirito Santo (-3,28%) e Minas Gerais (-2,54%), conforme ANUÁRIO BRASILEIRO DE SEGURANÇA PÚBLICA (2017).

Todo este arcabouço descritivo alicerça um esforço continuado de estado da arte iniciado com a dissertação de Mestrado em Economia do Crime, intitulada: **Analise da Eficiência Técnica da Polícia Ostensiva no Estado do Pará**, no qual o objetivo consistiu em calcular um índice técnico de eficiência do efetivo policial para os municípios paraenses, que resultou em quatro estratos de eficiência distintos, delimitados desta forma: 0,01 e 0,25 (baixa eficiência), 0,25 e 0,50 (regular eficiência), 0,50 e 0,75 (eficiência média) e 0,75 e 1,00 (eficiência alta), dissertação esta defendida pelo autor, no ano de 2012, junto ao Programa de Pós-Graduação *Strictu-sensu* em Economia Regional do Instituto de Ciências Sociais Aplicadas (ICSA/UFPA).

A partir disto, uma nova fronteira metodológica de investigação continuada do objeto central desta tese encontrou espaço para novas descobertas e análise criteriosa e cientifica que tem como objetivo geral: estabelecer uma estimação comparativa empírica de análise entre os fatores de natureza socioeconômica relacionados com a eficiência dos gastos com segurança pública no controle ao crime de homicídio ocorridos nos municípios do Estado Federados pertencentes à Amazônia Legal. Especificamente, será calculado o escore de eficiência técnica para cada município dos estados e, por sua vez, far-se-á um mapeamento de quais municípios necessitam de mais investimentos em fatores de natureza socioeconômica.

# As **hipóteses** investigadas na tese são as seguintes:

**Hipótese 01:** A evolução do escore de eficiência total geral, para o controle dos óbitos decorrentes de causas externas (homicídios), apresenta diferentes magnitudes quantitativas e qualitativas correlacionadas à natureza socioeconômica dos municípios pertencentes à Amazônia Legal no período de 2002 a 2015, sendo grande parte classificadas como eficiência **Baixa.** 

**Hipótese 02:** A evolução do escore de eficiência por tamanho populacional, para o controle dos óbitos decorrentes de causas externas (homicídios), apresenta diferentes magnitudes quantitativas e qualitativas correlacionadas à natureza populacional dos municípios pertencentes à Amazônia Legal no período de 2002 a 2015, sendo grande parte classificadas como eficiência **Alta.** 

Para fazer frente a isto, procurar-se-á responder a seguinte indagação: Em que medida os diversos fatores ou variáveis de natureza socioeconômicas e institucionais influênciam na eficiência dos gastos de segurança pública para o controle do crime de óbito por causa externa (homicídio) dentre os municípios dos Estados Federados pertencentes à Amazônia Legal?

Por fim, esta tese se encontra estruturada e organizada em seis partes distintas. Na primeira, apresenta-se o panorama descritivo da área de estudo investigada, internalizando as descrições socioeconômicas e característica especifica de cada estado da Amazônia Legal. Posteriormente, demonstra-se o referencial teórico, que embasa a justificativa teórica de investigação do objeto central da tese já citado anteriormente. Na sequência, organiza-se a metodologia para o desenvolvimento do trabalho empírico, que se utilizou de comparação empírica da média descritiva, como forma de qualificar os resultados. Adiante ao escopo estrutural, aplica-se o método matemático de Análise de Envoltórios de Dados (DEA) e, por conseguinte, apresentam-se os resultados encontrados a partir do modelo proposto de eficiência. E finalmente demonstra-se as conclusões, referências e apêndices dos resultados encontrados.

# 2. PANORAMA DESCRITIVO DA ÁREA DE ESTUDO

O segundo capítulo da tese delimita o panorama descritivo da área de estudo e se propõe a disponibilizar a magnitude qualitativa e quantitativa consolidada, referente à caracterização socioeconômico, demográfica e configuração espacial dos municípios das Unidades Federativas pertencentes à delimitação geográfica da Amazônia Legal, que engloba, por sua vez, as seguintes unidades federativas: Amazonas, Pará, Amapá, Acre, Tocantins, Roraima, Rondônia, Maranhão e Mato Grosso.

A descrição física da área que delimita Amazônia Legal é entendida como sendo um Cadastro dos municípios brasileiros localizados na Amazônia Legal do país, com uma extensão total de aproximadamente 5.020.000 km². A Amazônia Legal foi criada inicialmente como área de atuação da Superintendência do Plano de Valorização Econômica da Amazônia (SPVEA), em 1953. Atualmente, ela corresponde à área dos Estados da Região Norte (Acre, Amapá, Amazonas, Pará, Rondônia, Roraima e Tocantins), acrescidos da totalidade do Estado de Mato Grosso e dos municípios do Estado do Maranhão situados a oeste do meridiano 44° O. Em sua configuração atual, equivale a área de atuação da SUDAM, IBGE (2019).

Destarte a isto, a descrição deste panorama da área de estudo foi delimitada pelas seguintes variáveis: Área Territorial, Estimativa Populacional, Número de Estabelecimento de Ensino Fundamental, Número de Estabelecimento de Ensino Médio, Número de Estabelecimento na Educação Profissional, Hospitais por 10 mil Habitantes, Postos e Centros de Saúde por 10 mil Habitantes, Famílias Cadastradas no Programa Bolsa Família: 2012 a 2016, Taxa de Homicídios por 100(cem) mil Habitantes: 2011 a 2015, População vivendo em Domicílios Próprios já Quitados (%): 2011 a 2015, População Economicamente Ativa: 2013 a 2015, Produto Interno Bruto (1.000.000 RS) a valores correntes e Saldo da Balança Comercial: 2012 a 2016.

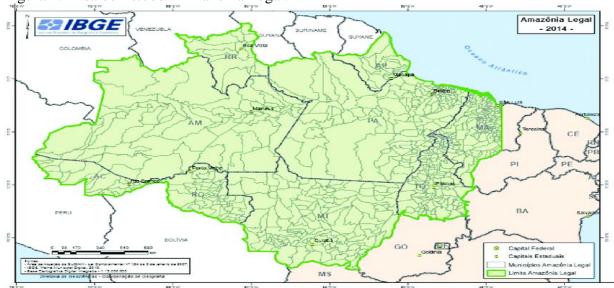



Figura 2: Área de Estudo - Amazônia Legal.

Fonte: Instituto Brasileiro de Geografia e Estatística - IBGE, 2018.

# 2.1. Área Territorial

A Tabela 1 demostra a magnitude do quantitativo de municípios total do Brasil (5.570) municípios e a extensão territorial (8.502.728,30 km²). Por sua vez, a Região Norte possuindo o quantitativo de (450) municípios e extensão territorial de (3.853.575,60 km²). Dentre os Estados da Amazônia Legal, apresenta-se a seguinte magnitude de municípios: o Estado do Pará (144), o Estado de Tocantins (139), o Estado do Amazonas (62), o Estado de Rondônia (52), o Estado do Acre (22), o Estado do Amapá (16), o Estado de Roraima (15), o Estado do Maranhão (217), e o Estado do Mato Grosso (141), conforme dados estatísticos (FAPESPA, 2016).

Dentre os Estados da Região Norte (3.853.575,60 km²), o Estado do Amazonas é o que apresenta maior extensão territorial, um total de (1.559.161,70 km²), ficando o Estado do Pará em segundo lugar, apresentando o total de (1.247.950,00 km²). Por sua vez, os demais Estados da Amazônia Legal se apresentaram com os seguintes quantitativos de Área Territorial: Estado de Rondônia (237.590,90 km²), Estado do Acre (164.122,30 km²), Estado de Roraima (224.301,00 km²), Estado do Amapá (14.827,90 km²), Estado de Tocantins (277.621,90 km²), Estado do Maranhão (331.936,95 km²), e por fim, Estado do Mato Grosso (903.202,45 km²), conforme dados estatísticos do (IBGE, 2016).

Tabela 1: Região Norte e Unidades da Federação: Quantitativo de municípios e área territorial (km²), ano 2016.

| Brasil, Região Norte e<br>Unidades da Federação. | Quantitativ | vo de Municípios | Área Territorial (km²) |         |  |  |
|--------------------------------------------------|-------------|------------------|------------------------|---------|--|--|
| Brasil                                           | 5.570       | Ranking          | 8.502.728,30           | Ranking |  |  |
| Região Norte                                     | 450         | -                | 3.853.575,60           | -       |  |  |
| Rondônia                                         | 52          | 6°               | 237.590,90             | 6°      |  |  |
| Acre                                             | 22          | 7°               | 164.122,30             | 8°      |  |  |
| Amazonas                                         | 62          | 5°               | 1.559.161,70           | 1°      |  |  |
| Roraima                                          | 15          | 9°               | 224.301,00             | 7°      |  |  |
| Pará                                             | 144         | $2^{\circ}$      | 1.247.950,00           | 2°      |  |  |
| Amapá                                            | 16          | 8°               | 142.827,90             | 9°      |  |  |
| Tocantins                                        | 139         | 4°               | 277.621,90             | 5°      |  |  |
| Maranhão                                         | 217         | 1°               | 331.936,95             | 4°      |  |  |
| Mato Grosso                                      | 141         | 3°               | 903.202,45             | 3°      |  |  |

Fonte: Instituto Brasileiro de Geografia e Estatística (IBGE), 2016. Fundação Amazônia de Amparo a Estudos e Pesquisa (FAPESPA), 2016.

Elaboração: Elaboração e modificações do autor, citando fonte de pesquisa.

### 2.2. Estimativa populacional

A Tabela 2 demonstra a magnitude de evolução quantitativa das estimativas populacionais do Brasil, Região Norte e Unidades da Federação da Amazônia Legal, entre os lapsos temporais de 2012 a 2016. O Brasil se apresentou com um estimado populacional, em 2012, na ordem de (193.946.886) milhões de habitantes e, em 2016, estimou o quantitativo de (206.081.432) milhões de habitantes. Por sua vez, a Região Norte apresentou um estimado populacional, em 2012, na ordem de (16.318.163) milhões de habitantes e, em 2016, estimou um total de (17.707.783) milhões de habitantes, conforme dados estatísticos (IBGE, 2016).

Dentre os Estados da Região Norte, o Estado do Pará se apresenta em primeiro lugar no ranking de estimativas populacionais, sendo que no ano de 2012 apresentou (7.792.561) milhões de habitantes, enquanto que em 2016 (8.272.724) milhões de habitantes. Por sua vez, o Estado do Amazonas indica o terceiro lugar no ranking de estimativas populacionais, sendo que no ano de 2012 apresentou (3.590.985) milhões de habitantes, enquanto que, em 2016, apresentou a ordem estimada de (4.001.667) milhões de habitantes.

Para os demais Estados da Amazônia Legal, apresenta-se em 2016: Estado de Rondônia (1.787.279) milhões de habitantes, Estado do Acre (816.687) milhões de habitantes, Estado de Roraima (514.229) milhões de habitantes, Estado do Amapá (782.295) milhões de habitantes, Estado do Maranhão

(6.954.036) milhões de habitantes e, por fim, Estado do Mato Grosso (3.305.531) milhões de habitantes, conforme dados estatísticos do (IBGE, 2016).

Tabela 2: Brasil, Região Norte e Unidades da Federação: Estimativas Populacionais, ano 2012-2016.

| Brasil, Região Norte | <u> </u>    |             |             |             |             |             |
|----------------------|-------------|-------------|-------------|-------------|-------------|-------------|
| e Unidades da        | 2012        | 2013        | 2014        | 2015        | 2016        | Ranking     |
| Federação.           |             |             |             |             |             |             |
| Brasil               | 193.946.886 | 201.032.714 | 202.768.562 | 204.450.649 | 206.081.432 |             |
| Região Norte         | 16.318.163  | 16.983.484  | 17.231.027  | 17.472.636  | 17.707.783  | -           |
| Rondônia             | 1.590.011   | 1.728.214   | 1.748.531   | 1.768.204   | 1.787.279   | 5°          |
| Acre                 | 758.786     | 776.463     | 790.101     | 803.513     | 816.687     | 7°          |
| Amazonas             | 3.590.985   | 3.807.921   | 3.873.743   | 3.938.336   | 4.001.667   | $3^{\circ}$ |
| Roraima              | 469.524     | 488.072     | 496.936     | 505.665     | 514.229     | 9°          |
| Pará                 | 7.792.561   | 7.969.654   | 8.073.924   | 8.175.113   | 8.272.724   | 1°          |
| Amapá                | 698.602     | 734.996     | 750.912     | 766.679     | 782.295     | 8°          |
| Tocantins            | 1.417.694   | 1.478.164   | 1.496.880   | 1.515.126   | 1.532.902   | $6^{\circ}$ |
| Maranhão             | -           | 6.794.301   | 6.850.884   | 6.904.241   | 6.954.036   | $2^{\circ}$ |
| Mato Grosso          | -           | 3.182.113   | 3.224.357   | 3.265.486   | 3.305.531   | 4°          |

Fonte: Instituto Brasileiro de Geografia e Estatística (IBGE), 2016. Fundação Amazônia de Amparo a Estudos e Pesquisa (FAPESPA), 2017.

Elaboração: Elaboração e modificações do autor, citando fonte de pesquisa.

### 2.3. Número de Estabelecimento de Ensino Fundamental

A Tabela 3 abaixo demonstra o quantitativo de Estabelecimentos de Ensino Fundamental (federal, estadual, municipal e privado) no Brasil, Região Norte e Unidades da Federação no período de 2015 e 2016. O Brasil apresentou, em 2015, o quantitativo de (135.939) mil estabelecimentos de ensino fundamental, posterior a este período, no ano de 2016, este quantitativo decresceu para (134.523) mil estabelecimentos de ensino fundamental.

Por sua vez, a Região Norte apresentou a mesma tendência de decréscimo no quantitativo do número de estabelecimentos de ensino fundamental. Em 2015, apresentou um total de (20.124) mil estabelecimentos de ensino fundamental, sendo que em 2016, apresentou o quantitativo de (19.879) mil estabelecimentos de ensino fundamental. Dentre os Estados da Amazônia Legal, o Estado do Maranhão desponta com maior quantitativo de estabelecimentos de ensino fundamental, em 2015, possuía (10.540) mil destes e, por sua vez, acompanhou o decréscimo nacional, apresentando, em 2016, (10.343) mil estabelecimentos de ensino fundamental.

No segundo lugar do ranking, em termos quantitativos de número de estabelecimentos de ensino fundamental, apresenta-se o Estado do Pará, que, em 2015, quantificou (9.927) mil estabelecimentos de ensino fundamental, apresentando a mesma tendência de decréscimo para 2016, que ficou com (9.804) mil estabelecimentos de ensino fundamental. Os demais Estados da Amazônia Legal, em 2016, apresentaram os seguintes quantitativos de estabelecimentos de ensino fundamental: Estado de Rondônia (1.045) mil estabelecimentos de ensino fundamental, Estado do Acre (1.446) mil estabelecimentos de ensino fundamental, Estado de Roraima (652) estabelecimentos de ensino fundamental, Estado do Amapá (707) estabelecimentos de ensino fundamental, Estado do Mato Grosso (1.986) mil estabelecimentos de ensino fundamental, conforme dados estatísticos do (IBGE, 2016).

Tabela 3: Número de Estabelecimento de Ensino Fundamental: 2015 a 2016.

| Tabela 5: Numero de Estabelecimento de Ensino Fundamental. 2013 à 2016. |        |       |         |         |        |        |                 |       |        |         |         |  |
|-------------------------------------------------------------------------|--------|-------|---------|---------|--------|--------|-----------------|-------|--------|---------|---------|--|
| Brasil,                                                                 |        |       | 2015    |         |        |        | 2016            |       |        |         |         |  |
| Região                                                                  | -      |       |         |         |        |        |                 |       |        |         |         |  |
| Norte e                                                                 |        | Fodom | Esta du | Municin | Duivod |        | Donleina        | Eadon | Estadu | Municin | Duirrod |  |
| Unidades                                                                | Total  |       |         | Municip |        | Total  | Ranking<br>2016 |       |        | Municip |         |  |
| da                                                                      |        | al    | al      | al      | a      |        | 2010            | al    | al     | al      | a       |  |
| Federação.                                                              |        |       |         |         |        |        |                 |       |        |         |         |  |
|                                                                         | 135.93 |       |         |         | 23.54  | 134.52 |                 |       |        |         | 24.06   |  |
| BRASIL                                                                  | 9      | 46    | 24.225  | 88.121  | 7      | 3      | -               | 47    | 23.825 | 86.589  | 2       |  |
| NORTE                                                                   | 20.124 | 5     | 3.314   | 15.569  | 1.236  | 19.879 | -               | 6     | 3.251  | 15.334  | 1.288   |  |
| Rondônia                                                                | 1.075  | -     | 397     | 581     | 97     | 1.045  | 7°              | -     | 373    | 576     | 96      |  |
| Acre                                                                    | 1.461  | 1     | 591     | 849     | 20     | 1.446  | 5°              | 1     | 572    | 848     | 25      |  |
| Amazonas                                                                | 4.956  | 1     | 530     | 4.208   | 217    | 4.879  | 3°              | 1     | 535    | 4.115   | 228     |  |
| Roraima                                                                 | 645    | 1     | 364     | 252     | 28     | 652    | 9°              | 1     | 362    | 254     | 35      |  |
| Pará                                                                    | 9.927  | 2     | 606     | 8.622   | 697    | 9.804  | $2^{\circ}$     | 3     | 580    | 8.495   | 726     |  |
| Amapá                                                                   | 704    | -     | 369     | 284     | 51     | 707    | 8°              | -     | 369    | 284     | 54      |  |
| Tocantins                                                               | 1.356  | -     | 457     | 773     | 126    | 1.346  | 6°              | -     | 460    | 762     | 124     |  |
| Maranhão                                                                | 10.540 | 2     | 415     | 9.384   | 739    | 10.343 | 1°              | 2     | 395    | 9.188   | 758     |  |
| Mato                                                                    |        |       |         |         |        |        |                 |       |        |         |         |  |
| Grosso                                                                  | 2.003  | -     | 648     | 1.053   | 302    | 1.986  | 4°              | -     | 651    | 1.033   | 302     |  |

Fonte: Instituto Brasileiro de Geografia e Estatística (IBGE), 2016. Fundação Amazônia de Amparo a Estudos e Pesquisa (FAPESPA), 2017.

Elaboração: Elaboração e modificações do autor, citando fonte de pesquisa.

### 2.4. Número de Estabelecimento de Ensino Médio

A Tabela 4 abaixo demonstra o quantitativo de Estabelecimentos de Ensino Médio (federal, estadual, municipal e privado) no Brasil, Região Norte e Unidades da Federação no período de 2015 e 2016. O Brasil apresentou, em 2015, o quantitativo de (28.025) mil

estabelecimentos de ensino médio, posterior a este período, no ano de 2016, este quantitativo cresceu para (28.354) mil estabelecimentos de ensino médio.

Por sua vez, a Região Norte apresentou a mesma tendência de crescimento no quantitativo do número de estabelecimentos de ensino médio. Em 2015, apresentou um total de (2.212) mil estabelecimentos de ensino médio, sendo que em 2016, apresentou o quantitativo de (2.301) mil estabelecimentos de ensino médio. Dentre os Estados da Amazônia Legal, o Estado do Maranhão desponta com maior quantitativo de estabelecimentos de ensino médio, em 2015, possuía (1030) destes e, por sua vez, acompanhou o crescimento nacional, apresentando, em 2016, (1054) estabelecimentos de ensino médio.

Os demais Estados da Amazônia Legal, em 2016, apresentaram os seguintes quantitativos de estabelecimentos de ensino médio: o Estado do Amazonas com (449) estabelecimentos de ensino médio Estado de Rondônia (238) estabelecimentos de ensino médio, Estado do Acre com (208) estabelecimentos de ensino médio, Estado de Roraima com (154) estabelecimentos de ensino médio, Estado do Amapá com (140) estabelecimentos de ensino médio e, o Estado de Tocantins com (333) estabelecimentos de ensino médio, e, por fim, o Estado do Mato Grosso com (625) estabelecimentos de ensino médio, conforme dados estatísticos do (IBGE, 2016).

Tabela 4: Número de Estabelecimento de Ensino Médio: 2015 a 2016.

| Brasil,                                        |        |      | 2015   |      |       | 2016   |             |     |        |      |       |
|------------------------------------------------|--------|------|--------|------|-------|--------|-------------|-----|--------|------|-------|
| Região<br>Norte e<br>Unidades da<br>Federação. | Total  | Fed. | Est.   | Mun. | Priv. | Total  | Ranking     | Fed | . Est. | Mun. | Priv. |
| BRASIL                                         | 28.025 | 472  | 19.113 | 277  | 8.163 | 28.354 |             | 518 | 19.309 | 256  | 8.271 |
| NORTE                                          | 2.212  | 54   | 1.759  | 7    | 392   | 2.301  | -           | 59  | 1.834  | 4    | 404   |
| Rondônia                                       | 238    | 6    | 188    | -    | 44    | 238    | 6°          | 7   | 186    | -    | 45    |
| Acre                                           | 188    | 7    | 169    | -    | 12    | 208    | 7°          | 7   | 189    | -    | 12    |
| Amazonas                                       | 423    | 15   | 351    | 2    | 55    | 449    | 4°          | 15  | 378    | 2    | 54    |
| Roraima                                        | 144    | 5    | 128    | 1    | 10    | 154    | 8°          | 6   | 136    | 1    | 11    |
| Pará                                           | 771    | 11   | 547    | 2    | 211   | 779    | $2^{\circ}$ | 12  | 548    | 1    | 218   |
| Amapá                                          | 135    | 2    | 114    | -    | 19    | 140    | 9°          | 4   | 116    | -    | 20    |
| Tocantins                                      | 313    | 8    | 262    | 2    | 41    | 333    | 5°          | 8   | 281    | -    | 44    |
| Maranhão                                       | 1030   | 20   | 779    | 28   | 203   | 1054   | 1°          | 20  | 805    | 27   | 202   |
| Mato Grosso                                    | 613    | 15   | 472    | 2    | 124   | 625    | 3°          | 19  | 480    | 1    | 125   |

Fonte: Instituto Brasileiro de Geografia e Estatística (IBGE), 2016. Fundação Amazônia de Amparo a Estudos e Pesquisa (FAPESPA), 2017.

Elaboração: Elaboração e modificações do autor, citando fonte de pesquisa.

# 2.5. Número de Estabelecimento na Educação Profissional

A Tabela 5 abaixo demonstra o quantitativo de Estabelecimentos na Educação Profissional (federal, estadual, municipal e privado) no Brasil, Região Norte e Unidades da Federação no período de 2015 e 2016. O Brasil apresentou, em 2015, o quantitativo de (8.040) mil estabelecimentos na educação profissional, posterior a este período, no ano de 2016, este quantitativo decresceu para (7.937) mil estabelecimentos na educação profissional.

Por sua vez, a Região Norte apresentou a tendência diferente de crescimento no quantitativo do número de estabelecimentos na educação profissional. Em 2015, apresentou um total de (610) estabelecimentos na educação profissional, sendo que em 2016, apresentou o quantitativo de (585) estabelecimentos na educação profissional. Dentre os Estados da Amazônia Legal, o Estado do Maranhão desponta com maior quantitativo de estabelecimentos na educação profissional, em 2015, possuía (345) destes e, por sua vez, decresceu no período posterior, apresentando, em 2016, (269) estabelecimentos na educação profissional. Em termos quantitativos de número de estabelecimentos na educação profissional, apresenta-se o Estado do Amazonas, que, em 2015, quantificou (154) estabelecimentos na educação profissional, apresentando a mesma tendência de decrescimento para 2016, que ficou com (139) estabelecimentos na educação profissional.

Os demais Estados da Região Norte, em 2016, apresentaram os seguintes quantitativos de estabelecimentos na educação profissional: Estado de Rondônia (46) estabelecimentos na educação profissional, Estado do Acre (33) estabelecimentos na educação profissional, Estado de Roraima (19) estabelecimentos na educação profissional, Estado do Amapá (28) estabelecimentos na educação profissional, Estado de Tocantins (113) estabelecimentos na educação profissional, e, por fim, Estado do Mato Grosso (140) estabelecimentos na educação profissional, conforme dados estatísticos do IBGE (2016).

Tabela 5: Número de Estabelecimento na Educação Profissional: 2015 a 2016.

| Brasil, Região | 2015  |      |       |       |       | 2016  |             |      |       |      |       |
|----------------|-------|------|-------|-------|-------|-------|-------------|------|-------|------|-------|
| Norte e        |       |      | •     |       | •     |       |             | •    | •     |      | -     |
| Unidades da    | Total | Fed. | Est.  | Mun.  | Priv. | Total | Ranking     | Fed. | Est.  | Mun. | Priv. |
| Federação.     |       |      |       |       |       |       |             |      |       |      |       |
| BRASIL         | 8.040 | 574  | 2.811 | 1.122 | 3.533 | 7.937 | -           | 627  | 3.156 | 959  | 3.195 |
| NORTE          | 610   | 68   | 189   | 152   | 201   | 585   | -           | 72   | 190   | 107  | 216   |
| Rondônia       | 44    | 7    | 1     | 4     | 32    | 46    | 6°          | 8    | 1     | 2    | 35    |
| Acre           | 32    | 6    | 20    | -     | 6     | 33    | 7°          | 6    | 16    | 5    | 6     |
| Amazonas       | 154   | 15   | 68    | 43    | 28    | 139   | 4°          | 15   | 68    | 29   | 27    |
| Roraima        | 21    | 6    | 7     | 2     | 6     | 19    | 9°          | 6    | 7     | -    | 6     |
| Pará           | 224   | 20   | 21    | 89    | 94    | 207   | $2^{\circ}$ | 22   | 19    | 60   | 106   |
| Amapá          | 29    | 3    | 18    | 1     | 7     | 28    | 8°          | 4    | 16    | -    | 8     |
| Tocantins      | 106   | 11   | 54    | 13    | 28    | 113   | 5°          | 11   | 63    | 11   | 28    |
| Maranhão       | 345   | 20   | 15    | 221   | 89    | 269   | 1°          | 24   | 24    | 145  | 76    |
| Mato Grosso    | 147   | 15   | 72    | 8     | 52    | 140   | $3^{\circ}$ | 19   | 67    | 7    | 47    |

Fonte: Instituto Brasileiro de Geografia e Estatística (IBGE), 2016. Fundação Amazônia de Amparo a Estudos e Pesquisa (FAPESPA), 2017.

Elaboração: Elaboração e modificações do autor, citando fonte de pesquisa.

## 2.6. Hospitais por 10 mil Habitantes

A Tabela 6 abaixo demonstra a relação do quantitativo de Hospitais por 10(dez) mil habitantes no Brasil, Região Norte e Unidades da Federação no período de 2012 e 2016. O Brasil apresentou, em 2012, a relação quantitativa de (0,35) hospitais por 10(dez) mil habitantes, posterior a este período, no ano de 2016, esta relação quantitativa decresceu para (0,33) hospitais por 10 (dez) mil habitantes.

Por sua vez, a Região Norte apresentou a mesma tendência de decrescimento na relação quantitativa de hospitais por 10(dez) mil habitantes. Em 2012, apresentou uma relação quantitativa de (0,33) hospitais por 10(dez) mil habitantes, sendo que em 2016, apresentou um decréscimo nesta relação quantitativa, (0,31) hospitais por 10(dez) mil habitantes. Dentre os Estados da Amazônia Legal, o Estado do Pará apresentou, em 2012, a relação quantitativa de hospitais por 10(dez) mil habitantes de (0,31).

Por sua vez, decresceu no período posterior, apresentando, em 2016, a relação de quantitativa de (0,29). Sendo que os demais assim se apresentaram, em 2016: Estado de Rondônia (0,49) hospitais por 10(dez) mil habitantes, Estado do Acre (0,26) hospitais por 10(dez) mil habitantes, Estado de Roraima (0,23) hospitais por 10(dez) mil habitantes, Estado do Amapá (0,14) hospitais por 10(dez) mil habitantes, Estado do Amazonas (0,27) hospitais por 10(dez) mil habitantes, Estado de Tocantins (0,40) hospitais por 10(dez) mil habitantes,

Estado do Maranhão (0,37) hospitais por 10(dez) mil habitantes e, por fim, Estado do Mato Grosso (0,50) hospitais por 10(dez) mil habitantes, conforme dados estatísticos do DATASUS (2016).

Tabela 6: Hospitais por 10(dez) mil Habitantes: 2012 a 2016.

| Brasil, Região Norte e    |      | Hospitais por 10 Mil Habitantes 2012 2013 2014 2015 2016 Ranking |      |      |      |                 |
|---------------------------|------|------------------------------------------------------------------|------|------|------|-----------------|
| Unidades da<br>Federação. | 2012 | 2013                                                             | 2014 | 2015 | 2016 | Ranking<br>2016 |
| BRASIL                    | 0,35 | 0,34                                                             | 0,34 | 0,33 | 0,33 | -               |
| Norte                     | 0,33 | 0,32                                                             | 0,32 | 0,31 | 0,31 | -               |
| Rondônia                  | 0,51 | 0,49                                                             | 0,48 | 0,49 | 0,49 | $2^{\circ}$     |
| Acre                      | 0,29 | 0,28                                                             | 0,28 | 0,26 | 0,26 | 7°              |
| Amazonas                  | 0,28 | 0,26                                                             | 0,28 | 0,27 | 0,27 | 6°              |
| Roraima                   | 0,28 | 0,27                                                             | 0,28 | 0,24 | 0,23 | 8°              |
| Pará                      | 0,31 | 0,30                                                             | 0,30 | 0,29 | 0,29 | 5°              |
| Amapá                     | 0,19 | 0,16                                                             | 0,15 | 0,14 | 0,14 | 9°              |
| Tocantins                 | 0,46 | 0,45                                                             | 0,43 | 0,42 | 0,40 | 3°              |
| Maranhão                  | -    | 0,32                                                             | 0,35 | 0,36 | 0,37 | <b>4</b> °      |
| Mato Grosso               | -    | 0,54                                                             | 0,52 | 0,50 | 0,50 | 1°              |

Fonte: DATASUS. Fundação Amazônia de Amparo a Estudos e Pesquisa (FAPESPA), 2017.

Elaboração: Elaboração e modificações do autor, citando fonte de pesquisa.

# 2.7. Postos e Centros de Saúde por 10 mil Habitantes

A Tabela 7 abaixo demonstra a relação do quantitativo de Postos e Centros de Saúde por 10(dez) mil habitantes no Brasil, Região Norte e Unidades da Federação no período de 2012 e 2016. O Brasil apresentou, em 2012, a relação quantitativa de (2,25) postos e centros de saúde por 10(dez) mil habitantes, posterior a este período, no ano de 2016, esta relação quantitativa decresceu para (2,21) postos e centros de saúde por 10 (dez) mil habitantes.

Por sua vez, a Região Norte apresentou a mesma tendência de decrescimento na relação quantitativa de postos e centros de saúde por 10(dez) mil habitantes. Em 2012, apresentou uma relação quantitativa de (2,31) postos e centros de saúde por 10(dez) mil habitantes, sendo que em 2016, apresentou um decréscimo nesta relação quantitativa, (2,25) postos e centros de saúde por 10(dez) mil habitantes. Dentre os Estados da Amazônia Legal, o Estado do Maranhão apresentou, em 2013, a relação quantitativa de postos e centros de saúde por 10(dez) mil habitantes de (3,31). Por sua vez, decresceu no período posterior, apresentando, em 2016, a relação de quantitativa de (3,26).

Os demais Estados da Amazônia Legal, em 2016, apresentaram as seguintes relações quantitativas de postos e centros de saúde por 10(dez) mil habitantes: Estado do Amazonas (1,64) postos e centros de saúde por 10(dez) mil habitantes, Estado do Pará (2,46) postos e centros de saúde por 10(dez) mil habitantes, Estado de Rondônia (1,85) postos e centros de saúde por 10(dez) mil habitantes, Estado do Acre (2,87) postos e centros de saúde por 10(dez) mil habitantes, Estado de Roraima (3,09) postos e centros de saúde por 10(dez) mil habitantes, Estado do Amapá (2,20) postos e centros de saúde por 10(dez) mil habitantes, Estado de Tocantins (2,55) postos e centros de saúde por 10(dez) mil habitantes e, por fim, Estado de Mato Grosso (2,92) postos e centros de saúde por 10(dez) mil habitantes, conforme dados estatísticos do (DATASUS, 2016).

Tabela 7: Postos e Centros de Saúde por 10(dez) mil Habitantes: 2012 a 2016.

| Brasil, Região Norte e    |      | Postos e Cer | ntros de Saú | de por 10 M | il Habitante | es              |
|---------------------------|------|--------------|--------------|-------------|--------------|-----------------|
| Unidades da<br>Federação. | 2012 | 2013         | 2014         | 2015        | 2016         | Ranking<br>2016 |
| BRASIL                    | 2,25 | 2,22         | 2,25         | 2,21        | 2,21         | -               |
| Norte                     | 2,31 | 2,28         | 2,32         | 2,28        | 2,25         | -               |
| Rondônia                  | 2,10 | 2,04         | 2,13         | 1,91        | 1,85         | 8°              |
| Acre                      | 2,82 | 2,85         | 2,90         | 2,84        | 2,87         | 4°              |
| Amazonas                  | 1,75 | 1,67         | 1,70         | 1,69        | 1,64         | 9°              |
| Roraima                   | 3,94 | 3,85         | 3,74         | 3,34        | 3,09         | $2^{\circ}$     |
| Pará                      | 2,36 | 2,38         | 2,44         | 2,44        | 2,46         | 6°              |
| Amapá                     | 2,96 | 2,84         | 2,76         | 2,66        | 2,20         | 7°              |
| Tocantins                 | 2,53 | 2,48         | 2,48         | 2,54        | 2,55         | 5°              |
| Maranhão                  | -    | 3,31         | 3,34         | 3,28        | 3,26         | 1°              |
| Mato Grosso               | _    | 2,90         | 2,97         | 2,95        | 2,92         | 3°              |

Fonte: DATASUS. Fundação Amazônia de Amparo a Estudos e Pesquisa (FAPESPA), 2017.

Elaboração: Elaboração e modificações do autor, citando fonte de pesquisa.

### 2.9. Taxa de Homicidio por 100(cem) mil Habitantes: 2011 a 2015.

A Tabela 8 abaixo demonstra a relação do quantitativo do número de crimes de homicídios por 100(cem) mil habitantes no Brasil, Região Norte e Unidades da Federação no período de 2011 e 2015. O Brasil apresentou, em 2011, a relação quantitativa de (26,44) crimes de homicídios por 100(cem) mil habitantes, posterior a este período, no ano de 2015, esta relação quantitativa cresceu para (27,49) crimes de homicídios por 100 (cem) mil habitantes.

Por sua vez, a Região Norte apresentou a mesma tendência de crescimento na relação quantitativa de números de crimes de homicídios por 100(cem) mil habitantes. Em 2011, esta região apresentou uma relação quantitativa de (34,22) homicídios por 100(cem) mil habitantes, sendo que em 2015, apresentou um crescimento nesta relação quantitativa, (39,36) homicídios por 100(cem) mil habitantes. Dentre os Estados da Amazônia Legal, o Estado do Pará apresentou, em 2011, a relação quantitativa de número de crime de homicídios por 100(cem) mil habitantes de (39,59). Por sua vez, cresceu no período posterior, apresentando, em 2015, a relação de quantitativa de (44,62).

Os demais Estados da Amazônia Legal, em 2015, apresentaram as seguintes relações quantitativas de número de crimes de homicídios por 100(cem) mil habitantes: Estado do Amazonas (36,77) crimes de homicídios por 100(cem) mil habitantes, Estado de Rondônia (33,65) crimes de homicídios por 100(cem) mil habitantes, Estado do Acre (26,76) crimes de homicídios por 100(cem) mil habitantes, Estado de Roraima (38,36) crimes de homicídios por 100(cem) mil habitantes, Estado do Amapá (38,22) crimes de homicídios por 100(cem) mil habitantes, Estado de Tocantins (31,94) crimes de homicídios por 100(cem) mil habitantes e, por fim, Estado do Mato Grosso (36,23) crimes de homicídios por 100(cem) mil habitantes, conforme dados estatísticos do (DATASUS, 2016).

Tabela 8: Taxa de Homicídios por 100(cem) mil Habitantes: 2011 a 2015.

| Brasil, Região Norte     | Taxa de Homicídios por 100 (cem) mil Habitantes |       |       |       |       |             |  |
|--------------------------|-------------------------------------------------|-------|-------|-------|-------|-------------|--|
| e Unidades<br>Federação. | 2011                                            | 2012  | 2013  | 2014  | 2015  | Ranking     |  |
| Brasil                   | 26,44                                           | 28,28 | 28,26 | 29,43 | 27,49 | -           |  |
| Região Norte             | 34,22                                           | 36,38 | 35,90 | 36,48 | 39,36 | -           |  |
| Rondônia                 | 26,58                                           | 30,69 | 27,83 | 33,00 | 33,65 | 7°          |  |
| Acre                     | 21,91                                           | 27,27 | 30,14 | 29,36 | 26,76 | 9°          |  |
| Amazonas                 | 35,18                                           | 35,93 | 31,28 | 32,01 | 36,77 | 4°          |  |
| Roraima                  | 20,22                                           | 29,85 | 43,85 | 31,80 | 38,36 | $2^{\circ}$ |  |
| Pará                     | 39,59                                           | 41,16 | 42,70 | 42,64 | 44,62 | 1°          |  |
| Amapá                    | 29,75                                           | 35,19 | 30,61 | 34,09 | 38,22 | 3°          |  |
| Tocantins                | 24,94                                           | 25,98 | 23,61 | 25,39 | 31,94 | 8°          |  |
| Maranhão                 | -                                               | 26,36 | 31,84 | 35,86 | 35,09 | 6°          |  |
| Mato Grosso              | -                                               | 33,77 | 36,27 | 42,06 | 36,23 | 5°          |  |

Fonte: DATASUS. Fundação Amazônia de Amparo a Estudos e Pesquisa (FAPESPA), 2017.

Elaboração: Elaboração e modificações do autor, citando fonte de pesquisa.

# 2.10. População vivendo em Domicílios Próprios já Quitados (%): 2011 a 2015.

A Tabela 9 abaixo demonstra a relação do percentual (%) da população que vive em domicílios próprios já quitados no Brasil, Região Norte e Unidades da Federação no período de 2011 e 2015. O Brasil apresentou, em 2011, a relação percentual (%) de (72,94) da população que vive em domicílios já quitados, posterior a este período, no ano de 2015, esta relação percentual (%) da população apresentou o valor de (72,37), vivendo em domicílios próprios já quitados.

Por sua vez, a Região Norte apresentou a mesma tendência de decrescimento na relação percentual (%) da população que vive em domicílios próprios já quitados. Em 2011, esta região apresentou uma relação percentual (%) de (81,78) da população que vive em domicílios já quitados, sendo que em 2015, apresentou um decrescimento nesta relação percentual (%), apresentando (80,92). Dentre os Estados da Amazônia Legal, o Estado do Amapá apresentou, em 2011, percentual (%) da população que vive em domicílios próprios já quitados (88,56). Por sua vez, decresceu no período posterior, apresentando, em 2015, a relação de percentual (%) de (86,70).

Os demais Estados da Amazônia Legal, em 2015, apresentaram as seguintes relação percentual (%) da população que vive em domicílios próprios já quitados: Estado do Amazonas (80,34) percentual (%) da população que vive em domicílios próprios já quitados, Estado do Pará (83,72) percentual (%) da população que vive em domicílios próprios já quitados, Estado de Rondônia (73,46) percentual (%) da população que vive em domicílios próprios já quitados, Estado do Acre (84,16) percentual (%) da população que vive em domicílios próprios já quitados, Estado de Roraima (73,86) percentual (%) da população que vive em domicílios próprios já quitados, Estado do Amapá (86,70) percentual (%) da população que vive em domicílios próprios já quitados, Estado de Tocantins (73,37) percentual (%) da população que vive em domicílios próprios já quitados, Estado do Maranhão (83,72) percentual (%) da população que vive em domicílios próprios já quitados, e, por fim, Estado do Mato Grosso (68,04) percentual (%) da população que vive em domicílios próprios já quitados, conforme dados estatísticos do (PNAD-IBGE, 2017).

| Tabela 9: População | vivendo em    | Domicílios l | Próprios i  | á ( | Duitados (        | (%)   | ): 2011 a 2015. |
|---------------------|---------------|--------------|-------------|-----|-------------------|-------|-----------------|
| Tuocia 7. Topulação | VIVCIIGO CIII | Donnenios    | r robitos i | u   | <i>juituuos</i> ( | / 0 / | /. <u></u>      |

| Brasil, Região Norte e    | Popul | População Vivendo em Domicílios Próprios já Quitados (%) |       |       |       |             |  |
|---------------------------|-------|----------------------------------------------------------|-------|-------|-------|-------------|--|
| Unidades da<br>Federação. | 2011  | 2012                                                     | 2013  | 2014  | 2015  | Ranking     |  |
| Brasil                    | 72,94 | 72,58                                                    | 71,73 | 70,98 | 72,37 | -           |  |
| Região Norte              | 81,78 | 80,58                                                    | 79,97 | 79,10 | 80,92 | 0           |  |
| Rondônia                  | 74,94 | 74,69                                                    | 71,97 | 70,14 | 73,46 | 7°          |  |
| Acre                      | 80,58 | 81,25                                                    | 83,34 | 82,45 | 84,16 | $2^{\circ}$ |  |
| Amazonas                  | 82,30 | 80,48                                                    | 77,66 | 79,34 | 80,34 | 5°          |  |
| Roraima                   | 75,87 | 74,56                                                    | 73,59 | 69,94 | 73,86 | 6°          |  |
| Pará                      | 84,12 | 82,67                                                    | 83,64 | 82,52 | 83,72 | 4°          |  |
| Amapá                     | 88,56 | 88,10                                                    | 87,43 | 81,90 | 86,70 | 1°          |  |
| Tocantins                 | 74,82 | 74,21                                                    | 72,01 | 70,10 | 73,37 | 8°          |  |
| Maranhão                  | 82,98 | 82,47                                                    | 80,51 | 83,07 | 83,72 | 3°          |  |
| Mato Grosso               | 70,92 | 69,67                                                    | 68,56 | 69,38 | 68,04 | 9°          |  |

Fonte: PNAD-IBGE. Fundação Amazônia de Amparo a Estudos e Pesquisa (FAPESPA), 2017.

Elaboração: Elaboração e modificações do autor, citando fonte de pesquisa.

# 2.11. População Economicamente Ativa: 2013 a 2015.

A Tabela 10 abaixo demonstra o quantitativo da população economicamente ativa no Brasil, Região Norte e Unidades da Federação no período de 2013 e 2015. O Brasil apresentou, em 2013, o quantitativo de população economicamente ativa de (103.401.464) milhões de pessoas, enquanto que a população não economicamente ativa foi de (69.731.130) milhões de pessoas, posterior a este período, no ano de 2015, esta relação quantitativa da população aumentou, apresentando o Brasil uma população economicamente ativa de (105.519.431) milhões de pessoas, enquanto que a população não economicamente ativa apresentou no período o quantitativo de (72.137.391) milhões de pessoas.

Por sua vez, a Região Norte apresentou a mesma tendência de crescimento na relação quantitativa da população economicamente ativa. Em 2013, esta região apresentou um quantitativo de (8.104.478) milhões de pessoas, no mesmo período apresentou um quantitativo de população não economicamente ativa de (5.836.847) milhões de pessoas. Em 2015, a Região Norte apresentou um crescimento neste quantitativo da população economicamente ativa para (8.287.191) milhões de pessoas, enquanto que a população não economicamente ativa apresentou o valor de (6.249.677) milhões de pessoas.

Dentre os Estados da Amazônia Legal, o Estado do Pará apresentou, em 2013, o quantitativo de população economicamente ativa de (3.798.044) milhões de pessoas,

enquanto, que o valor quantitativo da população não economicamente ativa no mesmo período foi de (2.777.299) milhões de pessoas. Por sua vez, cresceu no período posterior, apresentando, em 2015, o quantitativo de população economicamente ativa de (3.892.515) milhões de pessoas, enquanto que a população não economicamente ativa foi de (2.944.941) milhões de pessoas.

Os demais Estados da Amazônia Legal, em 2015, apresentaram os seguintes quantitativos da população economicamente ativa e população não economicamente ativa: Estado do Amazonas o quantitativo de população economicamente ativa de (1.844.734) milhões de pessoas, enquanto que o quantitativo da população não economicamente ativa foi de (1.371.543) milhões de pessoas, Estado de Rondônia (875.145) milhões de pessoas na população economicamente ativa e população não economicamente ativa foi de (623.002) milhões de pessoas, Estado do Acre (355.637) milhões de pessoas na população economicamente ativa e população não economicamente ativa foi de (295.711) milhões de pessoas, Estado de Roraima (250.244) milhões de pessoas na população economicamente ativa e população não economicamente ativa foi de (170.267) milhões de pessoas, Estado do Amapá (333.150) milhões de pessoas na população economicamente ativa e população não economicamente ativa foi de (290.075) milhões de pessoas, Estado de Tocantins (735.766) milhões de pessoas na população economicamente ativa e população não economicamente ativa foi de (554.138) milhões de pessoas, Estado do Maranhão (3.169.587) milhões de pessoas na população economicamente ativa e população não economicamente ativa foi de (2.484.824) milhões de pessoas e, por fim, Estado do Mato Grosso (1.705.126) milhões de pessoas na população economicamente ativa e população não economicamente ativa foi de (1.061.005) milhões de pessoas, conforme dados estatísticos do (RAIS-TEM, 2017).

Tabela 10: População economicamente ativa: 2013 a 2015.

| População Economicamente Ativa |             |                    |             |                    |             |                    |    |
|--------------------------------|-------------|--------------------|-------------|--------------------|-------------|--------------------|----|
| Brasil,<br>Região Norte        | 2013        |                    | 2014        |                    | 2015        |                    |    |
| e Unidades<br>Federação.       | Econ.ativa  | Não econ.<br>ativa | Econ. ativa | Não econ.<br>ativa | Econ. ativa | Não econ.<br>ativa |    |
| BRASIL                         | 103.401.464 | 69.731.130         | 106.824.410 | 68.409.995         | 105.519.431 | 72.137.391         | -  |
| Norte                          | 8.104.478   | 5.836.847          | 8.465.949   | 5.722.931          | 8.287.191   | 6.249.677          | -  |
| Rondônia                       | 880.292     | 583.742            | 909.065     | 562.496            | 875.145     | 623.002            | 5° |
| Acre                           | 336.750     | 283.419            | 373.437     | 263.076            | 355.637     | 295.711            | 7° |
| Amazonas                       | 1.770.629   | 1.277.728          | 1.907.914   | 1.246.437          | 1.844.734   | 1.371.543          | 3° |

| Roraima     | 230.091   | 170.441   | 264.417   | 142.951   | 250.244   | 170.267   | 9° |
|-------------|-----------|-----------|-----------|-----------|-----------|-----------|----|
| Pará        | 3.798.044 | 2.777.299 | 3.885.252 | 2.770.600 | 3.892.515 | 2.944.941 | 1° |
| Amapá       | 332.301   | 264.776   | 355.419   | 251.924   | 333.150   | 290.075   | 8° |
| Tocantins   | 756.371   | 479.442   | 770.445   | 485.447   | 735.766   | 554.138   | 6° |
| Maranhão    | 3.242.411 | 2.273.900 | 3.359.372 | 2.261.595 | 3.169.587 | 2.484.824 | 2° |
| Mato Grosso | 1.614.895 | 1.095.206 | 1.733.323 | 1.006.341 | 1.705.126 | 1.061.005 | 4° |

Fonte: RAIS-MTE. Fundação Amazônia de Amparo a Estudos e Pesquisa (FAPESPA), 2017.

Elaboração: Elaboração e modificações do autor, citando fonte de pesquisa.

## 2.12. Produto Interno Bruto (1.000.000 RS) a valores correntes.

A Tabela 11 abaixo demonstra o quantitativo monetário do produto interno bruto (1.000.000 R\$) a valores correntes no Brasil, Região Norte e Unidades da Federação no período de 2010 e 2014. O Brasil apresentou, em 2010, o quantitativo monetário de produto interno bruto (1.000.000 R\$) a valores correntes de (3.885.847) milhões de reais, posterior a este período, no ano de 2014, este quantitativo monetário aumentou, apresentando o Brasil um total de (5.778.953) milhões de reais.

Por sua vez, a Região Norte apresentou a mesma tendência de crescimento na relação quantitativa monetária do produto interno bruto (1.000.000 R\$) a valores correntes. Em 2010, esta região apresentou um quantitativo monetário do produto interno bruto (1.000.000 R\$) a valores correntes de (207.094) milhões de reais. Em 2014, a Região Norte apresentou um crescimento neste quantitativo monetário do produto interno bruto (1.000.000 R\$) a valores correntes para (308.077) milhões de reais. Dentre os Estados da Amazônia Legal, o Estado do Pará apresentou, em 2010, o quantitativo monetário do produto interno bruto (1.000.000 R\$) a valores correntes de (82.685) milhões de reais. Por sua vez, cresceu no período posterior, apresentando, em 2014, o quantitativo monetário do produto interno bruto (1.000.000 R\$) a valores correntes de (124.585) milhões de reais.

Os demais Estados da Amazônia Legal, em 2014, apresentaram os seguintes quantitativos monetários do produto interno bruto (1.000.000 R\$) a valores correntes: Estado do Amazonas apresentou o quantitativo monetário do produto interno bruto (1.000.000 R\$) a valores correntes de (86.669) milhões de reais, Estado de Rondônia (34.031) milhões de reais do produto interno bruto (1.000.000 R\$) a valores correntes, Estado do Acre (13.459) milhões de reais do produto interno bruto (1.000.000 R\$) a valores correntes, Estado de Roraima (9.744) milhões de reais do produto interno bruto (1.000.000 R\$) a valores correntes, Estado do Amapá (13.400) milhões de reais do produto interno bruto (1.000.000 R\$) a valores

correntes e, por fim, Estado de Tocantins (26.189) milhões de reais do produto interno bruto (1.000.000 R\$) a valores correntes, conforme dados estatísticos do (RAIS-MTE, 2017).

Tabela 11: Produto Interno Bruto (1.000.000 RS) a valores correntes.

| Brasil, Região                 |           | Produ     | to Interno Br | ruto (1.000.00 | 00 R\$)   |                 |
|--------------------------------|-----------|-----------|---------------|----------------|-----------|-----------------|
| Norte e Unidades da Federação. | 2010      | 2011      | 2012          | 2013           | 2014      | Ranking<br>2014 |
| BRASIL                         | 3.885.847 | 4.376.382 | 4.814.760     | 5.331.619      | 5.778.953 | -               |
| Norte                          | 207.094   | 241.028   | 259.101       | 292.442        | 308.077   | -               |
| Rondônia                       | 23.908    | 27.575    | 30.113        | 31.121         | 34.031    | 3°              |
| Acre                           | 8.342     | 8.949     | 10.138        | 11.474         | 13.459    | 5°              |
| Amazonas                       | 60.877    | 70.734    | 72.243        | 83.051         | 86.669    | 2°              |
| Roraima                        | 6.639     | 7.304     | 7.711         | 9.011          | 9.744     | 7°              |
| Pará                           | 82.685    | 98.711    | 107.081       | 121.225        | 124.585   | 1°              |
| Amapá                          | 8.238     | 9.409     | 11.131        | 12.763         | 13.400    | 6°              |
| Tocantins                      | 16.405    | 18.346    | 20.684        | 23.797         | 26.189    | 4°              |
| Maranhão                       | -         | -         | -             | -              | -         | -               |
| Mato Grosso                    | -         | -         | -             | -              | -         | -               |

Fonte: IBGE. Fundação Amazônia de Amparo a Estudos e Pesquisa (FAPESPA), 2017.

Elaboração: Elaboração e modificações do autor, citando fonte de pesquisa.

### 2.13. Saldo da Balança Comercial: 2012 a 2016.

A Tabela 12 abaixo demonstra o quantitativo monetário do saldo da balança comercial (US\$) no Brasil, Região Norte e Unidades da Federação no período de 2012 e 2016. O Brasil apresentou, em 2012, o quantitativo monetário de saldo da balança comercial de (16.584.059.876) trilhões de dólares, posterior a este período, no ano de 2016, este quantitativo monetário aumentou, apresentando o Brasil um total de (42.090.140.115) trilhões de dólares.

Por sua vez, a Região Norte apresentou a mesma tendência de crescimento na relação quantitativa monetária do saldo da balança comercial (US\$). Em 2012, esta região apresentou um quantitativo monetário do saldo da balança comercial (1.991.273.170) trilhões de dólares. Em 2016, a Região Norte apresentou um crescimento neste quantitativo monetário do saldo da balança comercial para (4.839.546.660) trilhões de dólares. Dentre os Estados da Amazônia Legal, o Estado do Pará apresentou, em 2012, o quantitativo monetário do saldo da balança comercial de (13.427.786.286) trilhões de dólares. Por sua vez, decresceu no período posterior, apresentando, em 2016, o quantitativo monetário do saldo da balança comercial (9.407.246.286) trilhões de dólares.

Os demais Estados da Amazônia Legal, em 2016, apresentaram os seguintes quantitativos monetários do saldo da balança comercial (US\$): Estado do Amazonas apresentou o quantitativo monetário do saldo da balança comercial de (-5.675.180.400) trilhões de dólares, Estado de Rondônia (332.779.217) bilhões de dólares, Estado do Acre (10.914.778) bilhões de dólares, Estado de Roraima (7.848.434) bilhões de dólares, Estado do Amapá (240.046.612) bilhões de dólares e, por fim, Estado de Tocantins (515.891.733) bilhões de dólares, conforme dados estatísticos do (ALICEWEB, 2017).

Tabela 12: Saldo da Balança Comercial: 2012 a 2016.

| Brasil,                                        |                | Saldo          | da Balança Con | nercial (US\$) |                |             |
|------------------------------------------------|----------------|----------------|----------------|----------------|----------------|-------------|
| Região<br>Norte e<br>Unidades da<br>Federação. | 2012           | 2013           | 2014           | 2015           | 2016           | Rankin<br>g |
|                                                |                |                |                | 15.068.561.49  | 42.090.140.11  |             |
| BRASIL                                         | 16.584.059.876 | -1.024.035.162 | -7.986.496.282 | 5              | 5              | -           |
| Norte                                          | 1.991.273.170  | 2.944.881.771  | 2.696.728.208  | 2.574.835.173  | 4.839.546.660  | -           |
| Rondônia                                       | 116.194.304    | 425.690.816    | 440.258.561    | 347.558.280    | 332.779.217    | 3°          |
| Acre                                           | 4.860.744      | 9.367.813      | -2.316.306     | 9.547.963      | 10.914.778     | 5°          |
|                                                | -              | -              | -              |                |                |             |
| Amazonas                                       | 12.406.748.490 | 13.067.791.599 | 11.978.232.970 | -8.065.544.972 | -5.675.180.400 | 7°          |
| Roraima                                        | 9.294.297      | 1.146.970      | 9.113.476      | 2.042.834      | 7.848.434      | 6°          |
| Pará                                           | 13.427.786.286 | 14.740.892.779 | 13.292.838.478 | 9.327.286.396  | 9.407.246.286  | 1°          |
| Amapá                                          | 323.695.025    | 320.227.503    | 313.838.246    | 195.005.643    | 240.046.612    | 4°          |
| Tocantins                                      | 516.191.004    | 515.347.489    | 621.228.723    | 758.939.029    | 515.891.733    | 2°          |
| Maranhão                                       | -              | -              | -              | -              | -              | -           |
| Mato                                           |                |                |                |                |                |             |
| Grosso                                         | -              | -              | -              | -              | -              | -           |

Fonte: ALICE-WEB. Fundação Amazônia de Amparo a Estudos e Pesquisa (FAPESPA), 2017.

Elaboração: Elaboração e modificações do autor, citando fonte de pesquisa.

# 3. REFERENCIAL TEÓRICO

O terceiro capítulo apresenta o referencial teórico utilizado para discutir os principais fundamentos teóricos e empíricos a respeito da relação existente entre os fatores socioeconômicos e institucionais que influenciam no controle da criminalidade violenta do crime de óbito por causa externa (homicídio). O aspecto econômico do crime é fundamentado pela teoria econômica desenvolvida por Becker (1968), que serviu de modelo teórico para a formatação do modelo econométrico e empírico.

## 3.1. Contribuições Econômicas e a Literatura Internacional

No contexto internacional, trabalhos empíricos foram desenvolvidos nos Estados Unidos, tendo como suporte de análise as contribuições teóricas de Becker (1968) e Ehrlich (1973). Em algumas pesquisas empíricas, a variável renda *per capita*, quando correlacionada com as taxas de crime, comporta-se de uma forma não simétrica de relação. Por exemplo, no trabalho econométrico de Fleisher (1963), o sinal indicativo de correlação é negativo, ou seja, aumentos percentuais da renda per capita da população fazem com que as taxas de crimes diminuam devido a fatores como aumento do poder de aquisição na compra e posterior aumento na satisfação do indivíduo, fazendo com que sua Utilidade Racional para a prática de um crime diminua.

Mathieson e Passell (1976) conseguiram estimar a elasticidade do crime em relação ao valor esperado da punição, ou seja, estimar a sensibilidade da relação existente entre a escolha de se cometer um crime e o valor que o criminoso estima para sua punição. Caso esta elasticidade seja positiva, o criminoso opta pelo cometimento do crime; sendo negativa, ele prefere o não cometimento da prática criminosa; e, quando nula, o criminoso fica indiferente, pois tanto faz pra ele uma punição severa ou não para a prática do crime.

Mauro Paolo (1995) e Tanzi (1997) modelaram a estimação, através de análise *Cross-Section*, que correlacionava os efeitos da corrupção na taxa de crescimento da renda *per capita*, nos investimentos públicos e na qualidade de infraestrutura. Os resultados encontrados indicaram uma relação negativa entre corrupção e taxa de crescimento da renda *per capita* e da qualidade de infraestrutura, e em relação ao investimento público, foi constatada uma relação positiva.

Dessa maneira, no ensaio de Levitt (1996 e 1997), alguns métodos de tratamento econométrico desses dados sofreram mudanças, pois este autor se debruçou na busca de fontes exógenas ao modelo para procurar explicar o crime. Ele utilizou como instrumentos as variações no número de presos e policiais derivados, respectivamente, de processos de direitos civis e ciclos eleitorais não associados às taxas de crimes. Os resultados sugeriram que o crime, nos Estados Unidos, responde, negativamente, ao número de policiais nas ruas e ao número de criminosos nas prisões. Um fator que tem comprometido uma análise mais robusta e confiável nos trabalhos empíricos a respeito dos determinantes econômicos do crime se refere à taxa de crimes por habitante como variável dependente, que tem sofrido com o chamado "erro de medição". No cotidiano policial, são bem conhecidos os problemas de subdenúncias, sub-registros, subnotificações, popularmente chamados entre os policiais de cifras negras¹. O grande entrave ocasionado pelo erro de medição é que ele, provavelmente, se encontra correlacionado com variáveis econômicas que são utilizadas como variáveis explicativas do crime no modelo econômico.

Fajnzylber et. al. (1998) se propuseram a estimar os determinantes das taxas de homicídios e roubos com uma amostra grande de países no período de 1970-1994 através de informações do *United Nations World Crime Surveys*. Os resultados obtidos sinalizaram que a variável desigualdade de renda apresenta uma relação positiva com as taxas de crime; a variável repressão policial apresenta significância de correlação, indicando que com um aparato repressivo mais eficiente as taxas de crimes tendem a diminuir; e os crimes apresentam uma inércia criminal significativa, mesmo que controlada por outras variáveis potenciais.

Com as contribuições de Fajnzylber, Lederman e Loayza (1998) a respeito dos determinantes internacionais das taxas de crime, o problema do erro de medição nos dados oficiais fora manipulado através de técnicas econométricas. Os autores utilizaram a natureza de dados em painel com o método de seção transversal de países ao longo de vários períodos. O período cronológico dos dados foi de 1965-95 provenientes das Nações Unidas ("UN Crime Surveys") assim como dados da Organização Mundial de Saúde. O objetivo do estudo foi minimizar o erro de medição. As variáveis utilizadas foram homicídios e roubos envolvendo violência, por tais crimes se apresentarem menos sujeitos a subdenúncias ou subregistros.

\_

<sup>&</sup>lt;sup>1</sup> Ver em Oliveira Neto (2005) o significado do vocábulo.

Soares (1999) desenvolveu outro trabalho referente ao problema do erro de medição, que combinou informações de fontes oficiais com dados de pesquisa de vitimização. O autor estabeleceu diferenças entre as fontes de dados utilizadas através da utilização de uma *proxy* do erro de medição nos dados oficiais. Com este método, o autor estimou os determinantes dessa *proxy* numa amostra comparativa de países desenvolvidos e em desenvolvimento. Os resultados obtidos com o modelo revelaram uma relação negativa e significativa entre o erro de medição e o nível de desenvolvimento.

Outra contribuição que explora a relação do efeito da urbanização sobre o crime é o trabalho de Glaeser e Sacerdote (1999), que se propuseram estudar os fatores que explicam os motivos que influenciam o fato de nas grandes cidades existirem taxas de crime altas, quando comparadas com cidades de menor porte. Os resultados evidenciados com a pesquisa sugeriam a existência de famílias uni parentais e das menores probabilidades de captura presentes em grandes centros urbanos. Fatores intrínsecos aos grandes centros urbanos, tais como nível de urbanização, esgotamento sanitário, presença de bolsões de miséria, favelas, etc. são variáveis que podem apresentar níveis significantes de correlação para explicar o crime nesses grandes centros.

Gould et. al. (2002) se propuseram, também, a explorar a relação existente entre as oportunidades do mercado de trabalho e o crime. A investigação dos autores consistiu na utilização de um painel com efeitos fixos envolvendo 709 municípios americanos, de 1979 a 1997, utilizando dados do UCR sobre vários tipos de crimes contra a pessoa e contra a propriedade. Entre as inovações feitas nesse estudo, as mais importantes foram as seguintes: os resultados foram analisados sobre os segmentos do mercado de trabalho não especializado, que, quando comparados com o mercado como um todo, fica mais consistente; os autores não se concentraram somente no desemprego, observaram também os salários reais dos não especializados; e, por fim, desagregaram o mercado de trabalho para enfocar especificamente os jovens.

Albuquerque (2007) estudou a correlação existente entre os crimes contra a propriedade e crimes contra a pessoa, em especial no contexto da economia do crime organizado. Com a utilização de dados de cidades mexicanas que fazem fronteiras com os Estados Unidos, ele constatou que existe uma forte relação entre o crime organizado e as taxas de homicídios. Na mesma análise proposta por Santos e Kassouf (2007) com os Estados

Brasileiros, foram também encontradas evidências de que o crime organizado (mercado de drogas) é um dos responsáveis pelas taxas de homicídios registradas.

Johnson et. al. (1997) desenvolveram um estudo com as taxas de crime de várias cidades nos EUA durante a grande depressão, e a conclusão foi que o aumento na taxa de alfabetização nas cidades em 1% reduziu a taxa de crime contra a propriedade em 0,6%. Os resultados para os crimes contra pessoa não foram significativos, pois foram dados agregados por cidade e, portanto, sofreram viés de agregação. A variável renda não foi incluída como variável explicativa no modelo, sendo que a taxa de emprego da cidade foi delimitada como indicador de atividade econômica.

Witte e Tauchen (1994), ao fazerem uso de dados individuais de painel, encontraram que a frequência à escola reduz a probabilidade de se cometer um crime em aproximadamente 10%, resultado considerado forte, mesmo sendo potencialmente endógeno (SOARES, 1999). Omotor (2009), em estudo elaborado na Nigéria, estimou os determinantes do crime entre a dinâmica socioeconômica através da utilização de variáveis quantitativas tais como nível populacional, desemprego, inflação e renda. Os resultados indicaram que o desemprego no longo prazo pode ser a variável mais significativa para determinar ou explicar o aumento do crime ou o aumento da insegurança na Nigéria.

## 3.2. Contribuições Econômicas do Crime no Brasil

Desde a concepção da Teoria da Escolha Racional (TER) do crime, assim como o advento dos primeiros ensaios<sup>2</sup> sobre a temática, algumas contribuições empíricas no Brasil surgiram e assim deram os primeiros passos para a investigação da temática no âmbito da Ciência Econômica. Em consonância com a teoria econômica em Ehrlich (1973), os resultados apresentados já eram esperados no modelo, essencialmente, por serem os crimes contra a pessoa motivados por sentimento de ódio, raiva ou ciúme, logo, sem uma análise sobre o custo/benefício da ação.

-

<sup>&</sup>lt;sup>2</sup> Vários artigos que se seguiram dentro da abordagem da escolha racional trabalharam basicamente com inovações em torno da ideia já estabelecida por Becker em que dois vetores de variáveis estariam condicionando o comportamento do potencial criminoso. Por outro lado, os fatores positivos, que levariam o indivíduo a escolher o mercado legal, como o salário, a dotação de recursos do indivíduo etc. Por outro lado, os fatores negativos, ou dissuasórios (*deterrence effects*), como a eficiência do aparelho policial e a punição. (ver citação em Loureiro

Pezzin<sup>3</sup> (2004) apresentou uma análise sobre as relações existentes entre as diferentes modalidades de crimes, tais como crimes contra o patrimônio, crimes contra a pessoa e o montante de crimes com algumas variáveis socioeconômicas como taxa de desemprego, índice de analfabetismo, gastos com investimento em segurança pública, taxa de pobreza etc. A análise dos resultados obtidos com o modelo sugeriu que os crimes contra a pessoa tendem a sofrer menor influência dos fatores socioeconômicos se comparados com os crimes contra o patrimônio.

Araújo Jr. e Fajnzylber (2000) pesquisaram os determinantes da criminalidade nas microrregiões mineiras utilizando dados da Polícia Militar de Minas Gerais e do Ministério da Saúde no que diz respeito aos homicídios, selecionando os níveis de escolaridade e de renda *per capita*, que estão negativamente associados à incidência de crimes contra a pessoa e positivamente a crimes contra a propriedade. A pesquisa identificou efeitos significativos para a desigualdade de renda, com correlação positiva para homicídios e negativa para os roubos de veículos.

Andrade e Lisboa (2000) se propuseram a estudar o comportamento da taxa de homicídios na população masculina através da relação entre as variáveis socioeconômicas dos Estados de Minas Gerais, Rio de Janeiro e São Paulo, no período entendido de 1981 a 1997. Usando os dados do Sistema de Informações sobre Mortalidade (SIM) do DATASUS, os autores utilizaram um modelo *Logit* modificado que captou efeitos geracionais (inércia) nas taxas de criminalidade, com a inclusão de variáveis dependentes defasadas. A estimação desse modelo teve como parâmetro cada uma das idades entre 15 e 40 anos. Entre alguns resultados encontrados pelos autores, destaca-se a relação negativa existente entre salário real e homicídios entre jovens com idade entre 15 e 19 anos.

Carrera-Fernandez e Pereira (2000) se dispuseram a estudar a criminalidade na Região Metropolitana de São Paulo utilizando taxas de ocorrências agregadas bem como mais dois tipos específicos de crime: roubo e roubo de veículos. Estabeleceram como variáveis explicativas a taxa de desemprego, o índice de desigualdade de renda de GINI, o rendimento médio do trabalho e as medidas de eficiência da polícia e da justiça. Com os resultados obtidos, reforçou-se a concepção teórica de que a redução dos índices de desemprego e de

.

<sup>&</sup>lt;sup>3</sup> Coube a Pezzin o desenvolvimento de um dos principais trabalhos quantitativos empíricos com a utilização de uma análise em Cross-section (com dados de 1983) e outra em séries temporais, para a região metropolitana de São Paulo (com dados compreendidos entre 1970 e 1984), conforme Cerqueira e Lobão (2004).

GINI, bem como a melhoria no rendimento médio do trabalho contribuem para reduzir a atividade criminal.

Mendonça (2001) analisou, empiricamente, os determinantes econômicos do crime para todos os estados do Brasil. O autor se prende a estender os modelos já existentes na literatura com o intuito de incorporar um mecanismo específico no qual a desigualdade de renda atua sobre a criminalidade. A metodologia aplicada pelo autor testa a influência da desigualdade (índice de Gini) através de dados em painel para os estados da federação brasileira no período de 1985 e 1995.

Araújo Jr. e Fajnzylber (2001) estudaram os determinantes econômicos e demográficos das taxas de homicídios abrangendo os estados da federação no período compreendido entre 1981 a 1996, utilizando informações de seis PNADs do IBGE e o Sistema de Informações sobre Mortalidade (SIM) do DATASUS. Outro ponto discutido pelos autores é que mesmo os modelos sendo de natureza microeconômica, grande parte dos dados constitutivos da pesquisa se encontravam agregados por região.

Cerqueira e Lobão (2003), com a utilização de séries temporais para os Estados do Rio de Janeiro e São Paulo, apresentaram evidências de que o aumento da desigualdade de renda tem impacto positivo sobre a criminalidade, sendo que para o nível de renda da população e para os gastos públicos em segurança, o efeito correlacionado foi negativo. Nesse aspecto, alguns trabalhos científicos se propuseram a investigar os determinantes da criminalidade nas cidades brasileiras, com contribuições robustas de Carneiro (2000) e Beato Filho et al. (2004). Cerqueira e Lobão (2004) apresentaram inúmeras teorias a respeito de crime, entre elas a teoria econômica da escolha racional, a qual propõe que o crime seja visto como uma atividade econômica, mesmo sendo ilegal. Toda a estrutura do modelo apresentado é baseada na hipótese racional do potencial do ofensor, em que se pressupõe que, agindo racionalmente, um indivíduo cometerá um crime se e somente se a utilidade esperada por ele exceder a utilidade que ele terá na alocação de seu tempo e demais recursos em atividades lícitas.

Carvalho et. al. (2005), ao desenvolverem trabalho em municípios como unidade de análise, utilizando a taxa de mortalidade por homicídio como variável a ser explicada, estimaram uma elasticidade de 0,069 com relação à percentagem de crianças fora da escola sem o modelo de autocorrelação espacial, e de 0,042 no modelo com autocorrelação espacial. Por sua vez, Gutierrez et. al. (2004) trabalharam com um painel de estados brasileiros visando

a investigar a relação entre desigualdade e homicídio. No modelo, foi incluída a frequência à escola como variável de controle, não tendo encontrado efeitos significativos sobre a taxa de homicídios. As variáveis utilizadas foram representadas pela frequência à escola e não pela escolaridade da população de quinze anos ou mais (SOARES, 2004).

### 3.3. Abordagem Ecológica e Espacial da Criminalidade

A concepção ecológica do crime teve inicio, em 1831, com o matemático belga Adolphe Quetelet e com o estatístico francês André Michel Guerry em 1883, quando publicaram estudos de distribuição espacial de crimes na França do século XIX. Esta teoria nasceu com intuito de tentar explicar os fatos de algumas comunidades manterem altas taxas de criminalidade ao longo do tempo, mesmo evidenciando uma rotatividade desta população no decorrer dos anos. Essa explicação teórica ecológica do crime se apresenta em duas vertentes distintas, que são: as teorias de desordem física e de desordem social.

Brofenbrenner (1979) enfatizou o papel do ambiente no desenvolvimento do indivíduo em vários aspectos. Tal abordagem conhecida como ecológica delimita e insere os indivíduos em quatros sistemas concêntricos apresentando suas interconexões. O indivíduo, num primeiro momento, encontra-se inserido num microssistema, entendido como um conjunto de atividades, papéis e relações interpessoais desenvolvida pelo indivíduo em um ambiente específico. Este contexto é formado por relações íntimas, que começa na família e amigos próximos e vão sendo acrescentadas ao longo da vida e das relações, tais como na escola e no convívio dos amigos dos cotidianos.

Com a aglutinação de microssistemas começa a formação do mesossistema, que é o conjunto de relações construídas ao longo de toda vida. Constata-se ainda o exossistema, que é composto pelos ambientes nos quais os indivíduos em desenvolvimento não estão presentes, mas os eventos ocorridos neste influenciam diretamente o seu desenvolvimento, como exemplo, o acesso ao mercado de trabalho dos pais. Finalmente, existe o macrossistema que é o conjunto de todos os sistemas e que envolve desde a situação conjuntural econômica que o indivíduo encontra-se inserido até o conjunto de valores compartilhados pela sociedade, este sistema apresenta influência direta nas formas de relação que ocorre nos sistemas anteriores (BROFENBRENNER, 1979).

Conforme entende Wilson e Kelling (1982) a teoria da desordem física relaciona o crime com as características físicas das localidades, tais como prédios degradados, terrenos baldios abandonados, loteamentos sem utilização, etc. Em se tratando da desorganização social, esta é entendida como sendo à incapacidade da comunidade de integrar valores afins de seus moradores, mantendo assim um efetivo controle social (SHAW e MCKAY, 1942; SAMPSON e GROVE, 1989). A percepção conclusiva de Wilson e Kelling (1982) leva ao entendimento de que a desordem física de uma comunidade com sendo um problema de "janelas quebradas". Os autores exemplificam, hipoteticamente, que num prédio que está com algumas janelas quebradas e ninguém as concertas, sendo assim as pessoas responsáveis pelo dano acabam assumindo que são relapsas na manutenção deste imóvel e assim quebram mais janelas. O entendimento é que a desordem se instala e as pessoas passam a cometer crimes mais sérios. A hipótese que se levanta é que em locais degradados tendem a apresentar taxas de crimes mais altas, tendo em vista que os criminosos entendem que os moradores são indiferentes ao que se passa na comunidade.

No entendimento de Sampson e Groves (1989) a análise da organização social ou o seu lado assimétrico, que seria a desorganização social, está estruturado na capacidade interativa da sociedade em controla e supervisionar seus próprios membros. A forma como é exercido esse controle é através de seus membros organizados em organizações sociais formais, tais como associações de bairros e religiosas bem como de outras formas de interação entre os membros e seus moradores. O caráter conclusivo que se chega é a de que sociedades em que a população participa de assembléias, centros de interações, clubes, igrejas e outras organizações sociais tendem a ter menores taxas de criminalidade em relação àquelas que não apresentam tal dinâmica.

O autor apresentou o modelo formal baseado em Glaeser e Sacerdote (1999), no entanto se preocupou em incorporar as contribuições da abordagem ecológica proposta por Brofenbrenner (1979). Os resultados obtidos confirmaram a hipótese de que a sensibilidade da criminalidade dos mais ricos é superior a renda dos mais pobres. A elasticidade da criminalidade com relação à renda dos mais ricos era de 0,24 para o ano de 2000 e com relação à renda dos mais pobres era de - 0,05. Outro aspecto relevante dos resultados foi o papel da escola na redução da criminalidade.

No Brasil a decomposição da escolaridade encontra-se dividida em três níveis de ensino: fundamental, médio e superior. O sinal para o acesso ao ensino fundamental mostrouse ambíguo nos resultados, tendo em vista que a variável escola 1, mesmo com valores estimados positivos, apresenta um intervalo de confiança a 95% de significância que inclui valores negativos. A variável escola 2 que representa o acesso ao ensino médio é positiva. A variável escola 3, que representa o ensino superior é que afeta negativamente a criminalidade, com elasticidade de - 0,06 em 1991 e - 0,08 em 2000. Oliveira (2005) investigou as causas da criminalidade em cidades e a sua relação com o tamanho das mesmas.

Conforme Oliveira (2005) a concepção ecológica considera que o ambiente em que o indivíduo está vivendo se modifica, assim o julgamento moral do indivíduo e, por consequência o custo moral, acaba-se alterando. A idéia de se analisar a criminalidade em uma cidade repassa pelo contexto da decisão de cometer um crime como sendo um fato que se concretiza no decorrer de um longo processo evolutivo, num dado momento histórico, levando em conta o ambiente de cada cidade. Dessa forma, fica entendido que as cidades possuem um processo dinâmico próprio que determina não só o custo moral para o cometimento do crime, mas também os custos de execução associados aos atos ilícitos.

Oliveira e Junior (2009) resenham que a abordagem ecológica considera que o ambiente no qual o indivíduo está inserido sofre modificações, dessa forma o julgamento moral do indivíduo e, por sua vez, o custo moral de se praticar atos criminosos também sofrem alteração. Quando se aborda a criminalidade em cidades é necessário considerar que a decisão de cometer um crime decorre de um longo processo evolutivo, que em certo momento de tempo se constitui o ambiente de cada espaço da cidade. Dessa maneira, cada cidade constitui um macrossistema próprio que determina não só o custo moral de se cometer um ato criminoso, mas também os custos de execução associados aos atos ilícitos.

Sutherland (1973) apud Molina e Gomes (2002) afirmou que o crime, assim como ofício ou outra profissão qualquer, é algo que pode ser apreendido. A capacidade ou destreza e a motivação necessárias para o delito se aprendem mediante o contato com valores, atitudes, definições e pautas de condutas criminais no curso de normais processos de comunicação e interação do indivíduo com seus semelhantes. (MOLINA e GOMES, 2002). Macedo e Simões (1998) analisaram alguns aspectos espaciais da estrutura urbana de Belo Horizonte

(MG) no ano de 1994 com base em informações do Índice de Qualidade de Vida Urbana (IQVH/BH).

Com a utilização do modelo econométrico proposto os autores avaliaram os determinantes da configuração urbana do município tais como qualidade de habitação, meio ambiente e amenidades urbanas (Araújo Jr. e Fajnzylber, 2000) e estimaram regressões espaciais com as seguintes variáveis: serviços urbanos, renda per capita, habitação, segurança patrimonial e pessoal. Com os resultados do modelo evidenciou-se autocorrelação espacial negativa para os registros de roubos dentro do critério de tempo de acesso, mas não autocorrelação espacial para o critério de vizinhança geográfica. O modelo indicou que a variável segurança pessoal apresentou distribuição aleatória, sendo assim não existiu distribuição espacial em nenhum dos critérios (MACEDO e SIMÕES, 1998).

No trabalho de Glaeser e Sacerdote (1999) foi investigado o efeito da urbanização das cidades sobre o crime, os autores procuram determinar os fatores que explicassem o porquê que nas grandes cidades as taxas de crimes são mais elevadas. Com os resultados obtidos a maior ênfase destes fez referência à maior incidência de famílias uniparentais e das menores probabilidades de captura presentes em grandes centros urbanos.

Em acordo com Cohen e Tita (1999) dentro do processo da criminalidade existem duas formas de disseminação do crime. A primeira forma é identificada através dos contatos diretos entre os indivíduos, estes se organizam através de redes e organizações criminosas (quadrilhas, concurso de pessoas no criminoso, gangues, etc.) que prolifera a criminalidade. A outra forma é através da imitação. Neste exemplo, os indivíduos analisam as oportunidades de retorno em uma região que ainda não foi explorada e praticam crimes semelhantes aos que são praticados em outras regiões, mesmo nunca ter havido um contato direto ou indireto entre estes criminosos.

Piquet (2000) desenvolveu uma análise das tendências longitudinais e espaciais da criminalidade nas regiões metropolitanas do Rio de Janeiro e São Paulo através de dados do Sistema de Informação de Mortalidade (SIM), tentando traçar os determinantes de vitimização e das taxas de crimes para as regiões. Os principais resultados são aqueles relativos aos determinantes da vitimização: a renda média, a escolaridade e a pobreza afetam as probabilidades de vitimização, mas não existe padrão único de correlação dessas variáveis (Araújo Jr. et al., 2000). Analisa as tendências longitudinais e espaciais da criminalidade na

região metropolitana do Estado do Rio de Janeiro utilizando dados do Sistema de Informação de Mortalidade (SIM) bem como estatísticas do Setor de Segurança e Justiça.

Piquet (2000) tentou traçar os determinantes de vitimização e das taxas de crime para as regiões. Dentre os resultados obtidos se constatou que as variáveis: renda média, escolaridade e pobreza influenciam nas probabilidades de vitimização, no entanto não existe padrão único de correlação entre as variáveis. Na pesquisa não se observaram efeitos significativos associados à proporção de mulheres chefes de família, sendo que com o consumo do álcool aumenta as probabilidades de vitimização nos crimes não economicamente motivados e nos crimes violentos e, por fim, a pesquisa revelou que a cor do agente criminoso não influencia nos riscos de vitimização por qualquer tipo de crime (ARAUJO Jr. e FAJNZYLBER, 2000). Lima (2003) esclarece que o crime surge como um elemento a mais num cenário urbano de profundas carências estruturais e ilegalismos.

Hugues (2004) entende que o desenho urbano e os territórios estão relacionados à criminalidade de um modo bastante direto, que denota a vinculação de eventos aos constrangimentos inerentes às situações de precariedade urbana e à exclusão social, especialmente as mazelas causadas por estas. Gomes (2005) realça a idéia defendendo que o espaço urbano está se fragmentando em inúmeros territórios com características próprias, apresentando assim um aumento de excludentes de cidadania, favorecendo por sua vez o aumento da criminalidade e o enfraquecimento da sociedade. Conforme o autor, a criminalidade é multiforme, crescente e penetra na estrutura social por meio das inúmeras oportunidades existentes no espaço urbano, fracionado entre espaços ocupados de forma irregular através das invasões e espaços murados como nos condomínios fechados, estruturas que caracterizam espaços segregados e, ao mesmo tempo, pertencentes à cidade, mesmo que afastados, compartilham certos espaços e, inclusive, os efeitos da violência.

Almeida et. al. (2005) ao utilizarem a taxa de homicídios intencionais nos municípios do Estado de Minas Gerais investigaram o padrão espacial da criminalidade e confirmaram que em Minas Gerais os resultados encontrados por Peixoto (2003), essencialmente para Belo Horizonte. Revelou-se, por sua vez, que a taxa de crime não é distribuída aleatoriamente, sendo assim há formação de clusters espaciais da criminalidade e autocorrelação espacial entre os municípios.

Batella et. al. (2008), ao explorar o fenômeno da criminalidade urbana nas cidades médias de Minas Gerais e sua distribuição espacial e seus determinantes, analisou espacialmente os crimes violentos contra o patrimônio e contra a pessoa. Os resultados indicaram que os crimes violentos contra o patrimônio apresentavam até 1997 taxas poucos significativas nas cidades médias do Estado, que flutuava em torno de 0 a 181,55 ocorrências por 100 mil habitantes, sendo que o fenômeno se encontrava uniformemente distribuído nas cidades. A análise espacial para os crimes violentos contra a pessoa indicou que esta não se encontra distribuída de uma forma uniforme nas cidades médias. As taxas ao longo do período oscilaram entre 102,84 a 193,25 por 100 mil habitantes.

Peixoto et. al. (2009) analisaram a criminalidade na Região Metropolitana de Belo Horizonte com base em teorias econômicas e sociológicas (ecológicas). Os resultados obtidos sugeriram que a taxa de homicídios esta relacionada positivamente à desordem física e social nas Unidades de Planejamento (UP). Com os resultados da estatística Moran I local para as taxas de homicídios foi constatado nas UP de São Bento/Santa Lucia apresentaram autocorrelação espacial positiva e a UP Prudente Morais que apresentou autocorrelação negativa. A UP São Bento/Santa Lucia podem indicar a existência de difusão do crime, pois dois de seus vizinhos são as favelas Barragem e Morro das Pedras, que apresentam grandes incidências de tráfico de drogas e que possuía as maiores taxas de homicídios globais. Na UP Prudente de Morais apresentou autocorrelação espacial negativa se referia as baixas taxas de homicídios em relação às taxas da média de seus vizinhos, caracterizando um outlier negativo. Em relação às taxas de roubos por cem mil habitantes, identificou-se a presença de dois clusters significativos um composto de regiões com baixas taxas de roubo, com pouca infraestrutura pública (saneamento básico, fornecimento de energia, água e luz) e com baixo índice de acabamento das residências.

Outro cluster de altas taxas de roubos que pode ser explicada pelo efeito de transbordamento das estruturas de serviços oferecidos pelo centro, o que torna a UP mais atrativas em termo de retorno esperado do roubo (PEIXOTO et. al., 2009). Santos (2009) analisou em seu trabalho qual seria o efeito espacial dos níveis de urbanização das cidades sobre a criminalidade. O autor partiu da hipótese de que dado o nível da utilidade esperada nas atividades laborais legais, quanto mais urbanizada a região no qual o individuo reside, maior será a utilidade esperada do crime.

Conforme Becker (1968) existe pelo menos duas explicações razoáveis para esta hipótese. A primeira é que em regiões mais urbanizadas, existe maior interação entre os grupos de criminosos com os potenciais criminosos, isso acaba por facilitar a troca de informações no planejamento dos crimes, pois reduzem os custos operacionais dessa atividade ilegal, logo acaba aumentando o retorno líquido esperado. A segunda é que em regiões mais urbanizadas a probabilidade do insucesso do crime é menor aumentar o anonimato dos indivíduos nas áreas urbanas, diminuindo a capacidade de controle, (SANTOS, 2009).

## 3.4. Teoria da Desorganização Social

A segunda linha teórica a ser discutida considera o fenômeno da criminalidade como consequência da perda do controle e da desorganização social resultantes do rápido processo de urbanização de uma sociedade. Trata-se da Teoria da Desorganização Social. Essa abordagem teórica debita a maior incidência dos crimes às características socioeconômicas das comunidades, cidades, bairros e vizinhanças. Na realidade, o mecanismo de causa do crime não se dá de forma direta, mas resulta do fato de que áreas com maior privação relativa e absoluta provocam incrementos na mobilidade e heterogeneidade populacional, conduzindo, assim, a um enfraquecimento dos laços tradicionais de organização social e, consequentemente, gerando um aumento na criminalidade da sociedade. A violência seria o resultado de um processo de frustração de indivíduos privados relativamente na realização de objetivos socialmente legítimos (BEATO FILHO, 2012).

A abordagem sistêmica da desorganização social se relaciona com as comunidades locais, que são explicadas na literatura como um complexo sistema de redes de associações formais e informais, de relações de amizade, parentesco e outras que de alguma forma influenciam no processo de socialização do indivíduo. Essas relações são condicionadas por meio de fatores estruturais, como o status econômico, a heterogeneidade étnica, a mobilidade residencial, a desagregação familiar e o processo de urbanização (SAMPSON; GROVES, 1989). Bursik e Grasmick (1993) propõem uma abordagem sistêmica que visa explicar as interações dos indivíduos nas comunidades, e que, a partir de tais relações, é determinado o comportamento de tal pessoa em relação ao ato criminoso. As redes sociais são responsáveis por desempenhar a organização social em determinada localidade, sendo subdividida em três níveis e interligadas entre si.

O primeiro nível é considerado o mais básico, relacionado com a interação nas redes privadas (ou seja, entre famílias, amigos, vizinhos), pelas quais são transmitidas as expectativas do indivíduo para o comportamento aceitável numa sociedade. É nessa etapa que ocorre a supervisão das crianças e adolescentes realizada pelos pais. O próximo nível para a organização social, definido como paroquial, é representado pela comunidade que tem a capacidade de supervisionar as ações dos residentes e visitantes, cujo controle é exercido por uma rede interpessoal mais ampla (associações de bairro, associações de pais e professores) e através da atuação de instituições locais (igrejas, escolas, organizações voluntárias).

Finalmente, o nível público da organização social conecta os laços particulares e paroquiais para um sistema maior de redes incorporadas dentro da estrutura ecológica de uma cidade. O controle público, portanto, é representado pelos serviços necessários à população e os recursos são gerenciados e distribuídos pelas agências externas às comunidades. Em geral, esses recursos são limitados e as comunidades locais têm de competir com outros bairros para a aquisição dos serviços públicos. Para Cerqueira e Lobão (2004), problemas relacionados ao colapso demográfico, ao processo de urbanização descontrolado e ao desajuste social provocado por fatores externos (espaços urbanos deteriorados, comercialização e consumo de drogas ilícitas em lugares abandonados pelo poder público e formação de grupo de jovens intencionados a cometer atos criminosos) e internos (ambientes familiares desestruturados) estariam ligados à origem da criminalidade.

#### 3.5. Teoria do Controle Social

A teoria que considera o crime como um subproduto de um sistema social perverso ou deficiente é denominada de Teoria do Controle Social. Para essa linha teórica, o fenômeno da criminalidade decorreria da incapacidade do Estado de prover os meios necessários para que o cidadão tenha uma vida de acordo com os padrões sociais. Essa abordagem considera que quanto maior for o envolvimento do cidadão no sistema social, e quanto maiores forem os elos da pessoa com a sociedade e maiores os graus de concordância com os valores e normas vigentes, menores são as chances dessa pessoa de cometer atos criminosos (CERQUEIRA; LOBÃO, 2005).

Hirschi (1969) relata a importância das escolas na contenção do comportamento delinquente. Para o autor, as escolas proveem oportunidades e incentivos para os jovens desenvolverem uma ligação social com outros jovens e um compromisso com os

comportamentos tradicionais de uma sociedade. No entanto, quando as escolas falham na função de agente socializador, aumentam-se as chances de que tais jovens sejam influenciados por outros indivíduos a cometerem atos criminosos.

## 3.6. Teoria da Associação Diferencial ou Teoria do Aprendizado Social.

A abordagem teórica que credita a ocorrência do ato criminoso às interações sociais dos indivíduos é denominada de Teoria da Associação Diferencial ou Teoria do Aprendizado Social. A partir de tais interações, surgiriam mais oportunidades para que o indivíduo cometa o ato criminoso. Essa abordagem considera que os comportamentos dos indivíduos são determinados a partir das experiências pessoais em situações de conflito. Sutherland (1973) ressalta que o comportamento favorável ou desfavorável do indivíduo à criminalidade seria apreendido a partir das interações pessoais (valores, atitudes, definições e pautas em relação ao ato criminoso), com base no processo de comunicação.

Dessa forma, a família, os grupos de amizade e a comunidade desempenham um papel central nesse tipo de análise. A decisão do indivíduo de seguir o caminho do crime pode ser influenciada, de acordo com a literatura, por uma série de fatores, conforme exposto nas abordagens teóricas anteriores. Pode ser de ordem social, econômica, institucional e política, como a desigualdade na distribuição de renda, a falta de acesso a serviços públicos básicos e a falta de controle da comunidade e do poder público, entre outros fatores que podem afetar a condição de vida das pessoas e a sua interação social.

No entanto, em decorrência do rápido processo de urbanização brasileiro, destaca-se que o crime organizado encontrou espaço para o crescimento e desenvolvimento no país. Glaeser e Sacerdote (1996) relatam que em regiões mais urbanizadas é comum que haja uma maior troca de informações entre grupos de criminosos, implicando, assim, menores custos de planejamento e execução do ato criminoso. Além disso, a qualidade de vida dos mais pobres foi comprometida devido ao déficit no acesso a serviços públicos básicos, como saneamento, educação e saúde. A prática criminosa, como, por exemplo, o mercado de drogas, surge como uma possibilidade de obtenção de recursos para uma melhoria de vida dessa parte da população brasileira excluída socioeconomicamente.

Resignato (2000) observa que a comercialização de drogas ilícitas se relaciona com a criminalidade em diversos aspectos. O primeiro seria em decorrência dos efeitos

psicofarmacológicos de dependência química dos usuários para sustentarem o vício, de modo que os indivíduos sujeitos a esse vício estariam dispostos a qualquer atitude para obtenção de recursos para a compra da droga, inclusive o de cometer crimes. Além disso, para o autor, deve-se considerar também a questão econômica e sistêmica desse tipo de mercado, pois a renda econômica gerada pela comercialização de drogas constitui um incentivo para que firmas e traficantes rivais disputem mercados, utilizando a violência como um meio para o alcance dos objetivos.

Para Schelling (1971), no mercado de drogas, a ausência de contratos executáveis faz com que a violência e o medo sejam os mecanismos utilizados para a continuidade da prática criminosa. Tais meios seriam adotados em situações como a punição de membros do próprio grupo de traficantes que tenham realizado comportamentos desviantes ou fraudes, na retaliação de rivais e na realização de cobranças aos usuários devedores.

Além dos fatores de ordem social, econômica, institucional e política que são elencados para explicar o fenômeno da criminalidade, deve-se considerar também a influência dos fatores criminógenos sobre esse fenômeno social, como a presença do mercado de drogas. Na existência de atividades criminosas lucrativas, o indivíduo pode optar pelo meio ilegal para a obtenção de recursos financeiros para uma melhora na qualidade de vida. Sendo assim, é necessária a inclusão desse último aspecto para uma análise mais completa da dinâmica da criminalidade no Brasil.

### 3.7. Abordagem da Eficiência Técnica no Combate a Criminalidade

No decorrer das últimas décadas, o debate referente à segurança pública vem sendo cada vez mais discutido, tanto no Brasil quanto no mundo. O aumento das taxas de criminalidade associada à violência com que alguns crimes são cometidos contra a pessoa e, por sua vez, contra o patrimônio desta. A conseqüência disto, em ultimo caso, acaba se tornando justificativa para este debate preocupante, cada vez mais presente na sociedade. Dessa forma, muito se discuti sobre políticas de segurança pública que almejem reduzir ou amenizar este quadro que já está se tornando caótico, o fator crítico deste quadro é que pouco se avança objetivamente em termos de políticas eficientes, sendo que em grande parte as políticas existentes são formatadas sob a égide aleatória do senso comum, sem qualquer fundamentação ou praticas de monitoramento e avaliação.

A complexidade do assunto em definir políticas eficazes de combate ao crime acaba se tornando o elemento nevrálgico de uma atuação mais eficiente e combativa. Não é fácil, chegar a um consenso uniforme e objetivo sobre tal temática. No entanto, a sensação de insegurança presente na população acaba criando uma ansiedade por medidas de curto prazo que se não resolverem pelo menos amenize este fenômeno social do crime. Neste sentido, o enfoque da eficiência dos agentes públicos envolvidos no combate direto da criminalidade acaba sendo um assunto de elementar importância para ser explorado e discutido. A identificação de fatores que, por sua vez, geram ineficiência acaba indicando medidas a serem tomadas para melhorar e combater à criminalidade.

A literatura vigente identifica Carrington et. al. (1997) como o autor pioneiro que calculou escore de eficiência técnica no combate a criminalidade da polícia para o Estado de New South Wales na Austrália e investigou a possibilidade de variáveis sócio econômicas em influenciar esses escores. A análise da eficiência técnica é baseada na teoria da produção, na qual se define o conjunto de produção, cujos elementos são todas as combinações de insumos e produtos que compreende as formas tecnologicamente viáveis de produzir (VARIAN, 2000). Outra frente de pesquisa a respeito de eficiência técnica foi desenvolvida por Sun (2002) nos distritos de Taipei, em Taiwan. Foi verificado se fatores sociais, tais como população entre 15-29 anos e tamanhos dos distritos, exerciam influência significativa nos escores de eficiência calculados no combate a criminalidade.

Belloni (2000) afirma que o critério de eficiência na produção está associado aos conceitos de racionalidade econômica e de produtividade material e internaliza a capacidade de organização de produzir um máximo de resultados com o mínimo de recursos. Dessa forma, para analisar a eficiência faz-se necessário entender melhor o conceito das curvas de produção que visam definir a relação entre insumos e produtos. As curvas de produção são à base da análise de eficiência, pois as considerações em torno das mesmas visam definir relações entre insumos e produtos (KASSAI, 2002).

Conforme Lins et. al. (2000), a história da Análise Envoltória de Dados começa com a dissertação para obtenção de grau de PhD de Edward Rhodes, sob a supervisão W. W. Cooper, publicada em 1978. O uso de medidas de eficiência tem crescido robustamente nas últimas décadas, tornando-se hoje um dos principais eixos de estudo dos economistas (Gomes

e Batista, 2004). Neste contexto, as medidas de eficiência podem ser obtidas, por exemplo, de problemas simples, que internalizam poucos insumos e produtos. No entanto, em situações em que se constatam várias unidades utilizam múltiplos insumos e produzem vários produtos, o cálculo da eficiência técnica relativa de cada unidade torna-se difícil e complexo, conforme Gomes et. al. (2004), para solucionar essas dificuldades podem-se obter, a partir de uma amostra de dados, fronteiras de eficiência, as quais servirão como referencial para as comparações entre as unidades.

Conforme Coelli et. al. (2005), os termos produtividade e eficiência são usados muitas vezes como sinônimos, sendo incorreta tal simetria, tendo em vista que são conceitos distintos. O autor define produtividade como a razão entre os outputs (saídas) e os inputs (entradas). Qualquer empresa pode ser mais produtiva investindo em tecnologia, alocando recursos, tais como capital e trabalho, ou então sendo mais eficiente. A eficiência envolveria a utilização otimizada dos recursos de que a organização dispõe. A literatura brasileira encontra em Mello et. al. (2005) a colaboração de cálculo de índices de eficiência no combate à criminalidade no Estado do Rio de Janeiro, esta contribuição não apresentou resultados significativos e sem um avanço na investigação dos possíveis determinantes daqueles índices.

A DEA é aplicada sobre os dados de forma a construir uma fronteira eficiente, que seria formada por firmas mais eficientes, isto é, identificando uma melhor relação entre insumo e produto, definindo então a posição das demais firmas em relação a essa fronteira, a teoria identifica de análise de envoltório porque nenhuma DMU pode ficar além da fronteira. Sobre o método DEA, Silva (2006) informa que o método apresenta como vantagem a maior facilidade em seu cálculo e também na representação por meio gráficos, que se trata de um método não-paramétrico que utiliza programação linear para construir uma fronteira de eficiência a partir de uma amostra de firmas ou unidades tomadores de decisão (DMU – Decision Making Unit), calculando índices individuais de ineficiência em relação a essa fronteira.

#### 3.8. Modelos teóricos

A teoria econômica do crime, cada vez mais, encontra espaço de atuação medular de proposta para análise do fenômeno crescente da criminalidade no mundo e, essencialmente, aqui no Brasil. O primeiro passo dessa proposta surgiu com o artigo clássico de Becker (1968), conforme a literatura internacional, que, posteriormente, encontrou respaldo na

diversidade de autores que se propuseram a estudar e fundamentar o fenômeno do crime segundo a utilidade racional econômica do indivíduo através do benefício que a atividade ilícita do crime pode gerar para o agente infrator. O fator econômico que leva o indivíduo a cometer um crime, mormente, desponta como o principal alicerce para a explicação da criminalidade, sendo notório também que a diversidade teórica diverge sobre isso, pois o indivíduo não comete um crime somente pelo benefício monetário, como acredita a maioria da população. Não se trata então de um fato estilizado em que se massifica uma questão em torno de um tema, na verdade, o crime passa pela própria aceitação moral do indivíduo, em que, como uma forma de se adequar a certa realidade, o indivíduo acaba por se envolver no braço traiçoeiro da criminalidade sendo levado a praticar um furto ou um roubo.

A própria ausência de políticas públicas consistentes que insiram o jovem no mercado de trabalho contribui para o entendimento da criminalidade, portanto, o crime não é somente explicado como sendo um benefício econômico, existem outros fatores que norteiam sua análise (BEATO FILHO, s.d) na literatura, sendo comum, por exemplo, a este contexto a própria urbanização desordenada, a ausência do controle estatal e social e a desigualdade de oportunidades e renda assim como a própria imposição do consumo da sociedade capitalista como elemento que contribui para piorar o quadro criminal nas cidades. Desta forma, a apresentação da teoria econômica sobre crime será demonstrada em acordo com três contribuições distintas: literatura internacional, literatura nacional e contribuições sobre crime na Região Metropolitana de Belém (RMB).

#### 3.8.1. Modelo Econômico de Becker

A proposta do modelo econômico teve como marco inicial o modelo de escolha individual racional, elaborado por Becker<sup>4</sup> (1968), e obteve, posteriormente, agregação através de Fajnzylber et al. (2000), que sugeriram algumas modificações com a finalidade de se aperfeiçoar a investigação do fenômeno da criminalidade. Em conformidade com as especificações do modelo, o indivíduo cometerá crimes caso os benefícios sejam superiores aos custos para se cometer o ilícito, no entanto, é necessário cuidado na abordagem do modelo para que não se dê um caráter financista à investigação da criminalidade, tendo em vista que a decisão de praticar um crime é um processo complexo em que a história do indivíduo e o seu ambiente influenciam o resultado de sua decisão (OLIVEIRA, 2008).

-

<sup>&</sup>lt;sup>4</sup> Becker assimila o conceito de crime como sendo uma atividade ilegal, as atividades ilegais são, portanto, seu objeto de análise. A abordagem de Becker não envolve considerações éticas ou morais.

$$B > OC + M + C + P(Pu) \tag{1}$$

Em que: B representa os benefícios relacionados ao crime (valores financeiros obtidos e satisfação na prática do delito); OC é o custo de oportunidade para o cometimento do crime; M é o custo moral<sup>5</sup>; C representa o custo de execução e planejamento do crime; e P(Pu) representa o custo associado à punição P(Pu) com a respectiva probabilidade de ocorrência da punição P. Estas variáveis são influenciadas pelo ambiente em que os indivíduos estão inseridos, segundo a abordagem ecológica (OLIVEIRA, 2005). Conforme Araújo Jr. e Fajnzylber (2000 apud SIMON et al., 2005), as atividades ilícitas variam em maior ou menor quantidade dependendo do retorno líquido e esse benefício, que deve ser capaz de cobrir o custo moral associado à atividade ilícita.

O criminoso potencial atribui um valor monetário ao crime e assim compara este valor ao custo monetário para seu cometimento, incluindo este custo não apenas seu custo de planejamento e execução, mas também o custo de oportunidade, isto é, a renda que pode ser perdida enquanto estiverem fora do mercado de trabalho legal, bem como o custo esperado de serem detidos e condenados e um custo moral atribuído com o desrespeito à lei (Fajnzylber, 2001).

A idéia basilar estabelecida é que quanto maior o tamanho da recompensa, maior será o índice de criminalidade, sendo que quanto maiores as probabilidades de prisão e de pena deste delinquente, menores serão estes índices de criminalidade no período. Como se trata de um modelo que relaciona a criminalidade às características das cidades, foram agregados alguns preceitos de Glaeser e Sacerdote (1999). O modelo apresentado desagrega os custos incorridos na atividade criminosa, dando destaque ao papel dos custos morais. Tendo por base teórica a equação acima, o modelo estabelece, a partir daí, a equação que representa o retorno líquido da atividade criminal (*RL*), assume-se que o benefício do crime seja uma função decrescente da quantidade de crimes cometidos:

$$RL=B-OC-P(Pu) \tag{2}$$

Dessa forma, um indivíduo está propenso a cometer um crime quando:

-

<sup>&</sup>lt;sup>5</sup> A eficiência do custo moral como barreira à entrada na atividade ilícita é condicionada a um julgamento moral executado pelo indivíduo sobre seu ato. O processo de construção do julgamento moral para os psicólogos desenvolvimentistas é um processo longo que vai desde a infância do indivíduo até sua idade adulta (OLIVEIRA, 2008).

$$RL \ge M \text{ ou } B\text{-}OC\text{-}P(Pu) \ge M$$
 (3)

Em contrariedade, o indivíduo não está propenso a cometer crime quando:

$$RL < M \text{ ou } B\text{-}OC\text{-}P(Pu) < M$$
 (4)

As equações expostas acima indicam que o ato de cometimento de uma atividade criminosa está associada a uma comparação entre o retorno líquido da criminalidade e o custo moral de praticar o ato ilícito. Compreende-se que o custo moral é tido como uma barreira à entrada do indivíduo no crime, logo, o ofensor potencial considerará para o cometimento do crime o custo de oportunidade, o custo moral e o retorno esperado do crime (Ehrlich, 1973).

A teoria ecológica sentencia o indicativo teórico de que o ato decisório de se cometer um crime numa cidade está condicionado a fatores de natureza endógena e exógena ao indivíduo. Dessa forma, esses fatores podem ser descritos conforme a equação abaixo:

$$B(\gamma) - OC(X, Z(\gamma)) - C(X, Z(\gamma)) - P(\gamma) Pu(X, Z(\gamma)) \ge M(X, Z(\gamma))$$
(5)

Em que *X* é representado pelos atributos individuais exógenos, que podem ser determinados pelo contexto ou história de vida do indivíduo em sociedade, influenciando assim o custo de oportunidade, o custo moral, os custos de execução e planejamento e o custo que pode ser associado à punição desse indivíduo. Nesta equação, essas variáveis também podem sofrer influências do ambiente no qual este indivíduo está inserido, sendo essas influências representadas por *Z*. Não se deve omitir que outras características peculiares das cidades podem acabar por influenciar a prática do crime, sendo tais características: grau de urbanização, densidade demográfica, moradias, quantidade de hospitais, escolas etc. Tais características são entendidas como pertencentes ao macrossistema das cidades e são representadas por *Y*. Dessa forma, *Y* apresenta-se, diretamente, como influência aos benefícios do crime e à probabilidade de ser punido e, indiretamente, ao custo de oportunidade, aos custos de ser punido e aos custos de planejamento e execução.

O modelo apresentado por Becker (1968) deixa transparente que a criminalidade é sensível à probabilidade de ser punido e à severidade da punição. A probabilidade de ser punido não se apresenta de uma forma unânime entre os resultados. Ehrlich (1972) encontrou coeficientes negativos estatisticamente significantes para a probabilidade de ser punido, mas

não encontrou resultados semelhantes para a severidade das penas. Archer e Gartner (1984) não conseguiram encontrar resultados significantes para a severidade da punição em estudos para um rol de países. Fajnzylber et al. (2001) encontraram resultados semelhantes e Wolpin (1978) não encontrou resultados estatísticos significativos para a Inglaterra e País de Gales para vários tipos de crimes e tamanho da pena, no período de 1894 a 1967 (OLIVEIRA, 2005). De uma forma geral, então, a equação pode ser assim reescrita:

$$d = f(X, Z, Y) = f(\Psi) \tag{6}$$

Em que X, Z eY são entendidos como fatores exógenos e endógenos determinantes para o cometimento do ato criminoso. Em termos estocásticos, assume-se a hipótese de que tanto a probabilidade de cometer um crime quanto a  $f(\Psi)$  são lineares, assim, obtendo-se a regressão que para cada indivíduo como sendo:

$$d = \Psi \beta + \mu \tag{7}$$

Em que: d representa a decisão de se cometer um crime:

$$d = \begin{cases} 0, quando \ o \ individuo \ n\~ao \ comete \ o \ crime; \\ 1, quando \ o \ indiv\'iduo \ comete \ o \ crime \\ \mu \ \'e \ otermo \ que \ representa \ o \ erro \ de \ tipo \ ru\'ido \ branco \end{cases} \tag{8}$$

Mesmo sendo consideradas arbitrárias, as linearidades assumidas na equação acima permitem a agregação numa outra equação para as cidades. Nesta circunstância, torna-se razoável tal procedimento, pois os dados utilizados não são individuais, mas sim agregados por locais específicos. Portanto, a criminalidade a ser utilizada é representada pela média de crimes de uma cidade i num determinado ponto no tempo. Estima-se o modelo de criminalidade com a fórmula:

$$Di = \Psi i \beta + \mu i \tag{9}$$

A equação acima sinaliza que a atividade do crime na cidade i tem dependência de características endógenas e exógenas agregadas a serem representadas por variáveis socioeconômicas disponíveis.

A proposta do trabalho parte da possibilidade de haver alguma dependência (autocorrelação) espacial da criminalidade. Sendo assim, o modelo com dependência espacial pode ser representado conforme a equação abaixo:

$$Di = \rho WiDi + \Psi i\beta + vi \tag{10}$$

Onde  $vi = \gamma W 2vi + \xi i \ e \ \xi i \sim N(0, \sigma^2 I)$ .  $W1 \ e \ W2$  são entendidas como sendo matrizes de peso espaciais. Estes pesos representam a relação de contiguidade ou de distância entre as cidades. Caso  $W_2 = 0$ , então se tem um modelo com lag espacial, implicando que a criminalidade das cidades vizinhas influencia a criminalidade da cidade i. Logo, se pode afirmar que existe um processo de difusão da criminalidade que se espalha por toda a região. Quando  $W_1 = 0$ , então se tem um modelo com erro espacial, ou seja, a criminalidade de uma cidade depende da associação espacial de alguma variável explicativa que não foi incluída no modelo.

#### 3.8.2. Modelo DEA

No decorrer das últimas décadas, o debate referente à segurança pública vem sendo cada vez mais discutido, tanto no Brasil quanto no mundo. O aumento das taxas de criminalidade está associado à violência com que alguns crimes são cometidos contra a pessoa e, por sua vez, contra seu patrimônio. A consequência disto, em último caso, acaba se tornando justificativa para este debate preocupante, cada vez mais presente na sociedade. Dessa forma, muito se discute sobre políticas de segurança pública que almejem reduzir ou amenizar este quadro que já está se tornando caótico, e o fator crítico deste quadro é que pouco se avança objetivamente em termos de políticas eficientes, sendo que em grande parte as políticas existentes são formatadas sob a égide aleatória do senso comum, sem qualquer fundamentação ou práticas de monitoramento e avaliação.

A complexidade do assunto em definir políticas eficazes de combate ao crime acaba se tornando o elemento nevrálgico de uma atuação mais eficiente e combativa. Não é fácil chegar a um consenso objetivo sobre tal temática. No entanto, a sensação de insegurança presente na população acaba criando uma ansiedade por medidas de curto prazo que se não resolverem pelo menos amenizem este fenômeno social do crime. Neste sentido, o enfoque da eficiência dos agentes públicos envolvidos no combate direto à criminalidade acaba sendo um assunto de elementar importância para ser explorado e discutido. A identificação de fatores

que, por sua vez, geram ineficiência acaba indicando medidas a serem tomadas para melhorar e combater a criminalidade.

A literatura vigente identifica Carrington et. al. (1997) como os autores pioneiros que calcularam o *escore* de eficiência técnica no combate à criminalidade da polícia para o Estado de *New South Wales*, Austrália, tendo investigado a possibilidade de variáveis socioeconômicas influenciarem esses escores. A análise da eficiência técnica é baseada na teoria da produção, na qual se define o conjunto de produção, cujos elementos são todas as combinações de insumos e produtos que compreendem as formas tecnologicamente viáveis de produzir (VARIAN, 2000). Outra frente de pesquisa a respeito de eficiência técnica foi desenvolvida por Sun (2002) nos distritos de Taipei, em Taiwan. Foi verificado se fatores sociais, tais como população entre 15-29 anos e tamanhos dos distritos, exerciam influência significativa nos escores de eficiência calculados no combate à criminalidade.

Belloni (2000) afirma que o critério de eficiência na produção está associado aos conceitos de racionalidade econômica e de produtividade material e internaliza a capacidade de organização de produzir um máximo de resultados com um mínimo de recursos. Dessa forma, para analisar a eficiência, faz-se necessário entender melhor o conceito das curvas de produção que visam a definir a relação entre insumos e produtos. As curvas de produção são base da análise de eficiência, pois as considerações em torno delas visam a definir relações entre insumos e produtos (KASSAI, 2002). Conforme Lins et al. (2000), a história da Análise Envoltória de Dados começa com a dissertação para obtenção de grau de PhD de Edward Rhodes, sob a supervisão W. W. Cooper, publicada em 1978. O uso de medidas de eficiência tem crescido robustamente nas últimas décadas, tornando-se hoje um dos principais eixos de estudo dos economistas (GOMES e BATISTA, 2004).

Neste contexto, as medidas de eficiência podem ser obtidas, por exemplo, de problemas simples, que internalizam poucos insumos e produtos. No entanto, em situações em que se constata que várias unidades utilizam múltiplos insumos e produzem vários produtos, o cálculo da eficiência técnica relativa de cada unidade se torna difícil e complexo, conforme Gomes et al. (2004). Para solucionar essas dificuldades, podem-se obter, a partir de uma amostra de dados, fronteiras de eficiência, que servirão como referencial para as comparações entre as unidades. A literatura brasileira encontra em Mello et. al. (2005) a elaboração de cálculo de índices de eficiência no combate à criminalidade no Estado do Rio

de Janeiro. Esta contribuição não apresentou resultados significativos sem um avanço na investigação dos possíveis determinantes daqueles índices. A DEA é aplicada sobre os dados de forma a construir uma fronteira eficiente, que seria formada por firmas mais eficientes, isto é, identificando uma melhor relação entre insumo e produto, definindo então a posição das demais firmas em relação a essa fronteira, e a teoria identificando a análise de envoltório porque nenhuma DMU pode ficar além da fronteira.

Sobre o método DEA, Silva (2006) informa que ele apresenta como vantagem maior facilidade em seu cálculo e também na representação por meio gráficos, tratando-se de um método não paramétrico que utiliza programação linear para construir uma fronteira de eficiência a partir de uma amostra de firmas ou unidades tomadores de decisão (DMU – Decision Making Unit), calculando índices individuais de ineficiência em relação a essa fronteira. As medidas de eficiência podem ser facilmente obtidas de problemas simples, que abrangem poucos insumos e produtos. Entretanto, em situações em que várias unidades utilizam múltiplos insumos e produzem vários produtos, o cálculo da eficiência relativa de cada unidade torna-se mais complexo. Para solucionar essas dificuldades, podem-se obter, a partir de uma amostra de dados, fronteiras eficientes, que servirão como referencial para as comparações entre as unidades (GOMES et. al., 2004).

Estas fronteiras podem ser estimadas por diferentes métodos paramétricos ou não paramétricos. As fronteiras estocásticas consistem em abordagens paramétricas, sendo estimadas por métodos econométricos, enquanto a análise envoltória de dados (DEA) é uma abordagem não paramétrica que envolve programação matemática em sua estimação. Nesse sentido, Charnes *et. al.* (1978) propuseram o primeiro modelo que ficou conhecido como *Data Envelopment Analysis* (DEA). A idéia central dessa técnica é encontrar a melhor DMU virtual para cada DMU real. Se a DMU virtual, que pode ser obtida pela combinação convexa de outras DMUs reais, conseguir produzir maiores quantidades de produtos utilizando a mesma ou menor quantidade de insumos, então a DMU real será ineficiente. As unidades eficientes que, quando combinadas, fornecem a DMU virtual para a unidade ineficiente são conhecidas como pares ou *benchmarks* daquela DMU.

Na literatura, as duas principais formas de calcular a eficiência técnica das DMUs são os modelos orientados a insumos e os modelos orientados a produto<sup>6</sup>. Os modelos orientados a insumos buscam identificar a ineficiência técnica das DMUs mediante redução proporcional na utilização dos insumos. Entretanto, podem-se também obter medidas de eficiência com o aumento proporcional na produção, mantendo-se as quantidades de insumos fixas, conhecidas como medidas de eficiência com orientação produto. Nos modelos com orientação ao insumo, a medida de eficiência  $(\theta)$  é menor ou igual à unidade, indicando a máxima redução na utilização dos insumos, mantendo-se fixas as quantidades dos produtos. De maneira análoga, em um modelo com orientação ao produto, a medida de eficiência ( \( \phi \)) \( \) \( \) maior ou igual à unidade, indicando a máxima expansão da produção, mantendo-se fixas as quantidades dos insumos. Como será demonstrado na próxima seção, no modelo DEA calculado existe apenas um insumo, o número de policiais militares em cada município (ou DMU), sendo coerente pensar que este insumo é fixo para cada unidade, e a variável que poderia ser objeto de análise seria a "produção" realizada por este insumo. A seguir, é apresentado o modelo utilizado na DEA, que incorpora a pressuposição de retornos variáveis à escala e orientação ao produto.

Nos modelos com orientação produto,  $\phi$  assume um valor unitário apenas quando a DMU é eficiente, indicando que nesse caso não há possibilidade de expansão dos produtos, mantendo-se fixas as quantidades de insumos. O problema com orientação produto, pressupondo-se retornos constantes à escala, pode ser escrito da seguinte forma:

$$MAX_{\phi,\lambda}\phi$$
,
 $sujeito\ a$ :
$$-\phi y_i + Y\lambda \ge 0,$$

$$x_i - X\lambda \ge 0,$$

$$\lambda \ge 0.$$
(11)

em que  $1 \le \phi < \infty$  e  $\phi - 1$  é o aumento proporcional nos produtos que poderiam ser obtidos pela i-ésima DMU, mantendo-se constante a utilização de insumos. A medida de eficiência técnica seria dada por  $1/\phi$ , que varia de zero a um.

O modelo de retornos constantes à escala pode ser reformulado com o objetivo de possibilitar retornos variáveis às DMUs analisadas. Essa proposta foi inicialmente feita por

\_

<sup>&</sup>lt;sup>6</sup> Existem, também, os modelos mistos (*mixed models*), que não são descritos aqui, porém, para mais detalhes, consulte Charnes et al. (1994), Cooper et al. (2000) e Lins et al. (2000).

Banker et. al. (1984), cujo modelo ficou conhecido como BCC, devido às iniciais dos nomes dos autores. A ideia é introduzir uma restrição de convexidade ao modelo CCR (retornos constantes) apresentado em (1). O modelo BCC, que pressupõe retornos variáveis à escala, pode ser representado pela seguinte notação algébrica:

$$MAX_{\phi,\lambda}\phi$$
, sujeito  $a$ : 
$$-\phi y_i + Y\lambda \ge 0,$$
 
$$x_i - X\lambda \ge 0,$$
 
$$N_1\lambda = 1$$
 
$$\lambda \ge 0.$$
 (12)

em que  $N_1$  é um vetor (n x 1) de algarismos unitários (1,...,1). Essa abordagem forma uma superfície convexa de planos em interseção, que envolve os dados de forma mais compacta do que a superfície formada pelo modelo com retornos constantes.

#### 4. METODOLOGIA

Conforme Vergara (2005), as pesquisas científicas podem ser classificadas em dois aspectos básicos: quanto aos fins e quanto aos meios. Quanto aos fins, a presente tese se constroi a partir de resultados estimados e comparações analíticas descritivas comparativas das médias dos percentuais obtidos dos valores das variáveis utilizadas no modelo matemático, descrevendo as características dos municípios da Amazônia Legal no período de 2002 a 2015, quanto a aplicação dos recursos públicos em segurança pública, e compara-los aos demais recursos públicos provenientes de outras variáveis alocadas em outras aréas socieconômicas no mesmo período.

Em se tratando dos meios na execução da pesquisa empírica, pode-se inferir que se trata de uma pesquisa com ênfase documental e quantitativa em bancos de dados estatísticos específicos sobre as variáveis do modelo matemático operacionalizado. Cita-se, neste contexto, a contribuição de Silva (2003) que observa que a pesquisa documental utiliza-se de fontes que ainda não receberam tratamento analítico ou que podem ser reelaboradas no intuito de extrair significado para a análise. A abordagem quantitativa é representada pelo uso da Análise Envoltória de Dados (Data Envelopment Analysis – DEA) para avaliar a eficiência da aplicação dos gastos com segurança pública nos municípios pertecentes a Amazônia Legal,

para isto, foi utilizado o software R. Ressalta-se que os dados são referentes aos anos de 2002 a 2012, provenientes do Banco de dados do FINBRA, DATASUS e IBGE (2018).

# 4.1. Divisão da amostra e aplicação do DEA

Um dos principais pressupostos do modelo DEA é que as DMUs devem ser homogêneas, ou seja, só posso trabalhar com um conjunto de variáveis cuja amostra seja semelhante. No caso das subunidades municipais dos estados da Amazônia Legal, é sabido que entre eles pode existir forte heterogeneidade no que tange ao descolamento de policiamento, pois municípios com maior número de habitantes devem ter mais recursos econômicos bem como maior efetivo policial, nesse caso a amostra foi dividida em três grupos caracterizados pelo número de habitantes no município. As Tabelas abaixo delimitam as faixas de classificação foram: Grupo 01 (municípios com até 20 mil habitantes); Grupo 02 (municípios com mais de 20 mil habitantes).

Tabela 13: Municípios do Pará por classificação.

| Classificação dos Grupos             | Municípios                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Até 20 mil Habitantes                | Mojuí dos campos, Bannach, Sapucaia, São João da Ponta, Pau d'Arco, Santarém Novo, Abel Figueiredo, Brejo Grande do Araguaia, Palestina do Pará, Peixe-Boi, Magalhães Barata, Santa Cruz do Arari, Faro, Inhangapi, Terra Alta, Primavera, Cumaru do Norte, Colares, Curuá, Quatipuru, Piçarra, Senador José Porfírio, São João do Araguaia, Vitória do Xingu, Bonito, Nova Timboteua, Jacareacanga, Nova Ipixuna, São Francisco do Pará, Bom Jesus do Tocantins, Brasil Novo, Aveiro, Ourém, Belterra, Trairão, São Caetano de Odivelas, Terra Santa, Santa Bárbara do Pará, Santa Maria das Barreiras, Rio Maria, Floresta do Araguaia, Curionópolis, Santa Luzia do Pará. |
| Mais de 20 mil até 50 mil Habitantes | Nova Esperança do Piriá, Salvaterra, Cachoeira do Arari, Anapu, São João de Pirabas, Chaves, São Sebastião da Boa Vista, Soure, Santa Maria do Pará, São Domingos do Araguaia, Bagre, Placas, Anajás, Melgaço, Limoeiro do Ajuru, Garrafão do Norte, Água Azul do Norte, Novo Progresso, São Geraldo do Araguaia, Bujaru, Ponta de Pedras, Cachoeira do Piriá, Aurora do Pará,                                                                                                                                                                                                                                                                                               |

|                           | Marapanim, Santo Antônio do Tauá, Canaã      |
|---------------------------|----------------------------------------------|
|                           | dos Carajás, Mocajuba, Medicilândia,         |
|                           | Ourilândia do Norte, Tracuateua, Mãe do Rio  |
|                           | Concórdia do Pará, Maracanã, Curralinho,     |
|                           | Oeiras do Pará, Gurupá, Prainha, São         |
|                           | Domingos do Capim, Goianésia do Pará,        |
|                           | Irituia, Eldorado do Carajás, Almeirim,      |
|                           | Tucumã, Porto de Moz, Muaná, Curuçá, Afuá    |
|                           | Igarapé-Açu, Baião, Salinópolis, Pacajá,     |
|                           |                                              |
|                           | Rurópolis, Augusto Corrêa, Xinguara,         |
|                           | Ulianópolis, Uruará, Conceição do Araguaia,  |
|                           | Rondon do Pará, Juruti, Vígia, Óbidos.       |
|                           | Itupiranga, Ipixuna do Pará, Dom Eliseu,     |
|                           | Jacundá, São Miguel do Guamá, Benevides,     |
|                           | Capitão Poço, Portel, Breu Branco, Alenquer, |
|                           | Acará, Monte Alegre, Santana do Araguaia,    |
|                           | Tomé-Açu, Viseu, Igarapé-Miri, Santa Izabel  |
| Mais de 50 mil Habitantes | do Pará, Novo Repartimento, Oriximiná,       |
| was de 30 mm Habitantes   | Capanema, Moju, Redenção, Tailândia, São     |
|                           | Félix do Xingu, Breves, Tucuruí, Itaituba,   |
|                           | Paragominas, Altamira, Barcarena, Marituba,  |
|                           | Bragança, Cametá, Abaetetuba, Parauapebas,   |
|                           |                                              |
|                           | Castanhal, Marabá, Santarém, Ananindeua,     |
|                           | Belém.                                       |

Fonte: IBGE

Elaboração própria.

Tabela 14: Municípios do Amazonas por classificação.

| Classificação dos Grupos             | Municípios                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Até 20 mil Habitantes                | Japurá, Itamarati, Itapiranga, Silves, Amaturá, Anamã, São Sebastião do Uatumã, Juruá, Caapiranga, Uarini, Canutama, Guajará, Alvarães, Novo Airão, Boa Vista do Ramos, Atalaia do Norte, Beruri, Anori, Envira, Tonantins, Urucará, Maraã, Urucurituba, Jutaí, Apuí, Santa Isabel do Rio Negro, Pauini, Nhamundá, Tapauá.                                |
| Mais de 20 mil até 50 mil Habitantes | Novo Aripuanã, Ipixuna, Manaquiri, Fonte Boa, Codajás, Careiro da Várzea, Santo Antônio do Içá, Barcelos, Rio Preto da Eva, Carauari, Presidente Figueiredo, Barreirinha, Boca do Acre, Eirunepé, Nova Olinda do Norte, São Paulo de Olivença, Autazes, Careiro, Benjamin Constant, Borba, Lábrea, São Gabriel da Cachoeira, Iranduba, Humaitá, Manicoré. |
| Mais de 50 mil Habitantes            | Maués, Tabatinga, Tefé, Coari, Manacapuru,                                                                                                                                                                                                                                                                                                                |
|                                      | Itacoatiara, Parintins, Manaus.                                                                                                                                                                                                                                                                                                                           |

Fonte: IBGE Elaboração própria.

Tabela 15: Municípios do Acre por classificação.

| Classificação dos Grupos             | Municípios                                                                                                                                                                                                        |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Até 20 mil Habitantes                | Acrelândia, Assis Brasil, Bujari, Capixaba, Epitaciolândia, Jordao, Mâncio Lima, Manoel Urbano, Marechal Thaumaturgo, Plácido de Castro, Porto Acre, Porto Walter, Rodrigues Alves, Santa Rosa do Purus e Xapuri. |
| Mais de 20 mil até 50 mil Habitantes | Brasileia, Feijó, Sena Madureira,<br>Senador Guiomard e Tarauacá.                                                                                                                                                 |
| Mais de 50 mil Habitantes            | Cruzeiro do Sul e Rio Branco.                                                                                                                                                                                     |

Fonte: IBGE

Elaboração própria.

Tabela 16: Municípios do Amapá por classificação.

| Classificação dos Grupos             | Municípios                                                                                                                                                              |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Até 20 mil Habitantes                | Amapá, Calçoene, Cutias, Ferreira Gomes,<br>Itaubal, Mazagão, Pedra Branca do Amapari,<br>Porto Grande, Pracuúba, Serra do Navio,<br>Tartarugalzinho e Vitória do Jari. |
| Mais de 20 mil até 50 mil Habitantes | Laranjal do Jari e Oiapoque.                                                                                                                                            |
| Mais de 50 mil Habitantes            | Macapá e Santana.                                                                                                                                                       |

Fonte: IBGE

Elaboração própria.

Tabela 17: Municípios do Maranhão por classificação.

| Tabela 17. Walletplos do Warailiao poi classif  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Classificação dos Grupos                        | Municípios                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Classificação dos Grupos  Até 20 mil Habitantes | Municípios  Afonso Cunha, Água Doce do Maranhão, Altamira do Maranhão, Alto Parnaíba, Amapá do Maranhão, Anapurus, Apicum-Açu, Araguanã, Axixá, Bacabeira, Bacuri, Bacurituba, Barão de Grajaú, Bela Vista do Maranhão, Belágua, Benedito Leite, Bernardo do Mearim, Boa Vista do Gurupi, Bom Lugar, Brejo de Areia, Buritirana, Cachoeira Grande, Cajapió, Cajari, Campestre do Maranhão, Cândido Mendes, Capinzal do Norte, Cedral, Central do Maranhão, Centro do Guilherme, Centro Novo do Maranhão, Cidelândia, Conceição do Lago-Açu, Davinópolis, Duque Bacelar, Esperantinópolis, Feira Nova do Maranhão, |  |  |  |
|                                                 | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                                                 | Fernando Falcão, Formosa da Serra Negra,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |

Fortaleza dos Nogueiras, Fortuna, Godofredo Viana, Goncalves Dias, Governador Archer, Governador Edison Lobão, Governador Eugênio Barros, Governador Luiz Rocha, Governador Newton Bello, Graça Aranha, Guimarães, Igarapé do Meio, Igarapé Grande, Itaipava do Grajaú, Jatobá, Jenipapo dos Vieiras, Joselândia, Junco do Maranhão, Lago do Junco, Lago dos Rodrigues, Lago Verde, Lagoa do Mato, Lagoa Grande do Maranhão, Lajeado Novo, Lima Campos, Loreto, Luís Domingues, Magalhães de Almeida, Maracacumé, Marajá do Sena, Maranhãozinho, Mata Roma, Matões do Norte, Milagres do Maranhão, Mirinzal, Montes Altos, Morros, Nina Rodrigues, Nova Colinas, Nova Iorque, Nova Olinda do Maranhão, Olho d'Água das Cunhãs, Olinda Nova do Maranhão, Palmeirândia, Passagem Franca, Pastos Bons, Paulino Neves, Peri Mirim, Pirapemas, Poção de Pedras, Porto Rico do Maranhão, Presidente Juscelino, Presidente Médici, Presidente Presidente Vargas, Primeira Cruz, Ribamar Figuene, Sambaíba, Santa Filomena Maranhão, Santana do Maranhão, Santo Amaro do Maranhão, Santo Antônio dos Lopes, São Benedito do Rio Preto, São Domingos do Azeitão, São Félix de Balsas, São Francisco do Brejão, São Francisco do Maranhão, São João do Carú, São João do Paraíso, São João do Soter, São José dos Basílios, São Luís Gonzaga do Maranhão, São Pedro da Água Branca, São Pedro dos Crentes, São Raimundo das Mangabeiras, São Raimundo do Doca Bezerra. Satubinha. Roberto. Senador Alexandre Costa, Senador La Rocque, Serrano do Maranhão, Sítio Novo, Sucupira do Norte, Sucupira do Tasso Riachão, Fragoso, Trizidela do Vale, Tufilândia, Vila Nova dos Martírios.

Mais de 20 mil até 50 mil Habitantes

Alcântara, Aldeias Altas, Alto Alegre do Maranhão, Alto Alegre do Pindaré, Amarante do Maranhão, Anajatuba, Araioses, Arame, Arari, Bequimão, Bom Jardim, Bom Jesus das Selvas, Brejo, Buriti, Buriti Bravo, Cantanhede, Carolina, Carutapera, Coelho Neto, Colinas, Cururupu, Dom Pedro, Estreito, Governador Nunes Freire, Humberto

|                           | de Campos, Icatu, Itinga do Maranhão, João                                       |  |  |
|---------------------------|----------------------------------------------------------------------------------|--|--|
|                           | Lisboa, Lago da Pedra, Matinha, Matões,                                          |  |  |
|                           | Mirador, Miranda do Norte, Monção,                                               |  |  |
|                           | Paraibano, Parnarama, Paulo Ramos,                                               |  |  |
|                           | Pedreiras, Pedro do Rosário, Penalva,                                            |  |  |
|                           | Peritoró, Pindaré-Mirim, Pio XII, Porto                                          |  |  |
|                           | Franco, Presidente Dutra, Raposa, Riachão,                                       |  |  |
|                           | Rosário, Santa Helena, Santa Luzia do Paruá,                                     |  |  |
|                           | Santa Quitéria do Maranhão, Santa Rita, São                                      |  |  |
|                           | Bento, São Bernardo, São Domingos do<br>Maranhão, São João Batista, São João dos |  |  |
|                           |                                                                                  |  |  |
|                           | Patos, São Mateus do Maranhão, São Vicente                                       |  |  |
|                           | Ferrer, Timbiras, Tuntum, Turiaçu,                                               |  |  |
|                           | Turilândia, Urbano Santos, Vitória do                                            |  |  |
|                           | Mearim, Vitorino Freire, Zé Doca.                                                |  |  |
|                           | Açailândia, Bacabal, Balsas, Barra do Corda,                                     |  |  |
|                           | Barreirinhas, Buriticupu, Caxias,                                                |  |  |
| 26.1.50. 377.11           | Chapadinha, Codó, Coroatá, Grajaú,                                               |  |  |
| Mais de 50 mil Habitantes | Imperatriz, Itapecuru Mirim, Paço do Lumiar,                                     |  |  |
|                           | Pinheiro, Santa Inês, Santa Luzia, São José de                                   |  |  |
|                           | Ribamar, São Luís, Timon, Tutóia, Vargem                                         |  |  |
|                           | Grande, Viana.                                                                   |  |  |

Tabela 18: Municípios de Rondônia por classificação

| Tabela 18: Municípios de Rondônia por classif | ıcação.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Classificação dos Grupos                      | Municípios                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Até 20 mil Habitantes                         | Alto Alegre dos Parecis, Alto Paraíso, Alvorada D'Oeste, Cabixi, Cacaulândia, Campo Novo de Rondônia, Castanheiras, Cerejeiras, Chupinguaia, Colorado do Oeste, Corumbiara, Costa Marques, Cujubim, Governador Jorge Teixeira, Itapuã do Oeste, Ministro Andreazza, Mirante da Serra, Monte Negro, Nova Brasilândia D'Oeste, Nova União, Novo Horizonte do Oeste, Parecis, Pimenteiras do Oeste, Primavera de Rondônia, Rio Crespo, Santa Luzia D'Oeste, São Felipe D'Oeste, São Francisco do Guaporé, Seringueiras, Teixeirópolis, Theobroma, Urupá, Vale do Anari, Vale do Paraíso. |  |  |
| Mais de 20 mil até 50 mil Habitantes          | Alta Floresta D'Oeste, Buritis, Candeias do<br>Jamari, Espigão D'Oeste, Guajará-Mirim,<br>Machadinho D'Oeste, Nova Mamoré, Ouro<br>Preto do Oeste, Pimenta Bueno, Presidente<br>Médici, São Miguel do Guaporé.                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Mais de 50 mil Habitantes                     | Ariquemes, Cacoal, Jaru, Ji-Paraná, Porto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |

| Velho  | Rolim  | de Moura. | Vilhena  |
|--------|--------|-----------|----------|
| v cmo. | KUIIII | uc moura. | v micha. |

Fonte: IBGE

Elaboração própria.

Tabela 19: Municípios de Roraima por classificação.

| Classificação dos Grupos             | Municípios                                                                                                                                        |  |  |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Até 20 mil Habitantes                | Alto Alegre, Amajari, Bonfim, Cantá,<br>Caracaraí, Caroebe, Iracema, Mucajaí,<br>Normandia, Pacaraima, São João da Baliza,<br>São Luiz, Uiramutã. |  |  |
| Mais de 20 mil até 50 mil Habitantes | Rorainópolis.                                                                                                                                     |  |  |
| Mais de 50 mil Habitantes            | Boa Vista.                                                                                                                                        |  |  |

Fonte: IBGE

Elaboração própria.

Tabela 20: Municípios de Tocantins por classificação.

| Classificação dos Grupos             | Municípios                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Até 20 mil Habitantes                | Municípios  Aguiarnopolis, Araguaçu, Augustinópolis, Axixá do Tocantins, Babaçulândia, Bernardo Sayao, Buriti do Tocantins, Chapada de areia, Darcinópolis, Divinópolis do Tocantins, Goiatins, Itaguatins, Jau do Tocantins, Juarina, Lagoa da confusão, Lagoa do Tocantins, Lajeado, Lizarda, Luzinópolis, Monte do Carmo, Nova Rosalandia, Novo jardim, Oliveira de Fátima, Ponte alta do bom Jesus, presidente Kennedy, Recursolândia, Riachinho, Rio da Conceição, Rio sono, Santa fé do Araguaia, Santa Maria do Tocantins, Santa Tereza do Tocantins, São Miguel do Tocantins, Sitio novo do Tocantins, Taipas do Tocantins e Talismã. |  |  |
| Mais de 20 mil até 50 mil Habitantes | Araguatins.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Mais de 50 mil Habitantes            | Palmas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |

Fonte: IBGE

Elaboração própria.

Tabela 21: Municípios de Mato Grosso por classificação.

| Classificação dos Grupos | Municípios                                                                                                                                                             |  |  |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Até 20 mil Habitantes    | Alto taquari, Castanheira, Ipiranga do norte,<br>Nova Olímpia, Paranaíta, Pedra preta,<br>Querência, São José do Xingu, Serra nova<br>dourada, Tapurah e Nova guarita. |  |  |

| 36 1 1 00 11 17 17 17     | Barra do bugres, Campo novo do Parecis,<br>Mirassol d'oeste, Nova mutum, Sapezal e<br>Vila rica. |
|---------------------------|--------------------------------------------------------------------------------------------------|
| Mais de 50 mil Habitantes | Cuiabá, Rondonópolis, Sinop, Tangara da serra e Várzea Grande.                                   |

Fonte: IBGE

Elaboração própria.

## 4.2. Descrição das Variáveis

A fim de se analisar a eficiência da segurança pública no combate ao crime de homicídio nas subunidades municipais dos estados federados da Amazônia Legal, fora utilizada como variável dependente no modelo, a variável: Óbitos por Causas Externas (homicidio), coletada junto ao banco de dados do Departamento de Informática do Sistema Único de Saúde (DATASUS), conforme Santos e Kassouf (2007), a vantagem desta categoria de crime recai devido a menor incidência com subnotificações.

Tabela 22: Variáveis selecionadas no Modelo de Análise de Envoltório de Dados (DEA).

| Variável<br>Outputs<br>(Produtos)                            | Unidade<br>Mensurada               | Banco de Dados Pesquisado | Referencial Teórico                                                                                                                                                           |
|--------------------------------------------------------------|------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Óbitos por<br>Causas<br>Externas<br>(Homicídio) <sup>7</sup> | Unidade<br>padrão<br>quantitativa. | DATASUS                   | FAJNZYLBER (1998);<br>BECKER (1968).                                                                                                                                          |
| Variável<br>Inputs<br>(Insumos)                              | Unidade<br>Mensurada               | -                         | Referencial Teórico                                                                                                                                                           |
| Assistência<br>Social                                        | Unidade<br>padrão<br>quantitativa. | FINBRA                    | BECKER (1968).                                                                                                                                                                |
| Educação                                                     | Unidade<br>padrão<br>quantitativa. | FINBRA                    | FAJNZYLBER; ARAÚJO<br>JUNIOR (2001); LOBO;<br>FERNANDEZ-CARRERA<br>(2000); SANTOS (2009);<br>OLIVEIRA (2005). WITTE<br>& TAUCHEN (1994);<br>HIRSCHI (1969); BECKER<br>(1968). |

-

<sup>&</sup>lt;sup>7</sup> As causas externas foram classificadas de acordo com o Capítulo XX da 10ª Classificação Internacional de Doenças – CID10: os acidentes estão contidos nos capítulos V01-Y98 em que os acidentes de transporte estão nas categorias V01- V99 e outras causas externas de lesões acidentais W00-X59. No caso das violências, as agressões estão na categoria X85-Y09 e os suicídios/lesões autoprovocadas intencionalmente em X60-X84. Os óbitos foram divididos ainda segundo as variáveis sociodemográficas: sexo, idade, raça, escolaridade, estado civil.

| População <sup>8</sup>            | Unidade<br>padrão<br>quantitativa. | DATASUS       | BECKER (1968).                                                                                |
|-----------------------------------|------------------------------------|---------------|-----------------------------------------------------------------------------------------------|
| Saneamento                        | Unidade<br>padrão<br>quantitativa. | FINBRA        | BECKER (1968).                                                                                |
| Saúde                             | Unidade<br>padrão<br>quantitativa. | FINBRA        | BECKER (1968).                                                                                |
| Segurança<br>Pública              | Unidade<br>padrão<br>quantitativa. | FINBRA        | FAJNZYLBER; ARAÚJO<br>JUNIOR (2001); PEREIRA;<br>FERNANDEZ-CARRERA<br>(2000); BECKER (1968).  |
| Urbanização                       | Unidade<br>padrão<br>quantitativa. | FINBRA        | SACHSIDA et. al. (2009);<br>BEATO FILHO (2012).<br>SAMPSON; GROVES,<br>(1989); BECKER (1968). |
| Produto<br>Interno Bruto<br>(PIB) | Unidade<br>padrão<br>quantitativa. | FINBRA / IBGE | BECKER (1968).                                                                                |

A hipótese subjacente a este teste, como discutido anteriormente, é testar se os escores de eficiência refletem, verdadeiramente, as diferenças do nível de eficiência técnica das unidades da polícia militar ou se eles incorporam fatores referentes ao ambiente socioeconômico na sua variabilidade. Assim, por exemplo, seria de se esperar escores de eficiência maiores em municípios com fatores socioeconômicos mais favoráveis e menores em municípios com fatores socioeconômicos mais degradados. Ou seja, locais com menor densidade populacional, condições de urbanização adequadas para a vida das pessoas, pequena desigualdade de renda, que não suscitasse conflitos sociais, em que o nível educacional e cultural da população fosse mais elevado etc., teriam condições propícias a uma menor ocorrência de crimes violentos e, consequentemente, favoreceriam a ação preventiva da polícia.

A maior parte dos estudos empíricos que seguem o arcabouço teórico proposto por Becker (1968) tem utilizado dados agregados, embora o ideal seja que os modelos sejam estimados com dados individuais, tendo em vista que se propõe a modelar o comportamento individual do agente criminoso. No entanto, apesar das críticas aos trabalhos que empregam

\_

<sup>&</sup>lt;sup>8</sup> Notas Técnicas : Origem dos dados: São apresentadas estimativas anuais de população para os municípios, desagregadas por sexo e idade, para o período de 2000 a 2015, das seguintes fontes: 2000 a 2013 - estimativas preliminares efetuadas por estudo patrocinado pela Rede Interagencial de Informações para a Saúde - RIPSA; 2014 e 2015 - estimativas preliminares elaboradas pelo Ministério da Saúde/SVS/CGIAE. DATASUS (2018).

dados agregados, nota-se que alguns resultados têm influenciado a formulação de políticas públicas voltadas à redução da criminalidade (CORNWELL e TRUMBULL, 1973). Tendo em vista este panorama, essencialmente, devido à indisponibilidade de dados individuais, estimam-se variáveis com dados agregados no modelo (SANTOS et. al., 2007).

# 5. DEMONSTRAÇÕES DOS RESULTADOS DE EFICIÊNCIA TÉCNICA (DEA)

A análise dos resultados estabelecera a logica temporal crescente, que delimitou a organização dos dados estatísticos entre os anos de 2002 a 2015. Por sua vez, cada unidade subnacional dos Estados Federados da Amazônia Legal será, criteriosamente, analisada e assim estabelecida um escore de eficiência técnica para casa DMU pertencente a tais estados. Desta forma, foram delimitados quatro estratos de eficiência de análise, sendo 0,01 a 0,25 (baixa eficiência), 0,25 a 0,50 (regular eficiência), 0,50 a 0,75 (média eficiência) e 0,75 a 1,00 (eficiência alta), (SCALCO et. al., 2012).

Destarte a isto, a compreensão para a leitura da estimativa do score de eficiência técnica das variáveis Óbitos por Causas Violentas (homicídios), perpassa pela compreensão da estimativa do escore de eficiência total das demais variáveis (assistência social, educação, saúde, saneamento, segurança pública, urbanização e produto interno bruto) e do score de eficiência por tamanho da população. Sendo assim, procurar-se-á delimita o filtro descritor das causas reais que interferem na eficiência do combate ao crime de homicídio nos estados subnacionais da Amazônia Legal.

### 5.1. Eficiência, ano base 2002.

A Tabela 23 abaixo demonstra a estimativa do score de eficiência técnica da variável Óbito por Causas Externas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Acre no ano de 2002. Consegue-se inferir, através da leitura da tabela que o munícipio de Rio Branco apresentou um escore de (0,88) neste período analisado, classificado como Alta eficiência no combate a diminuição dos homicídios dentre os demais municípios do Estado do Acre. Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Acre, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo apresentou o seguinte escore (3,35570E-05). Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2002.

Tabela 23: Eficiência do Estado do ACRE e DMU, ano 2002.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU        | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|------------|-----------|----------------------------------------------|---------------------------------------------------------------|---------------|
| AC                                               | Rio Branco | 267.740   | 3,35570E-05                                  | 0,882492324                                                   | Alta          |

A Tabela 24 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Amazonas no ano de 2002. Consegue-se inferir com a leitura da tabela, que os municípios que apresentaram classificação Alta de eficiência no combate ao crime de homicídio, sendo tais: Coari (0,78), Guajará (1,00), Manaus (1,00) e Parintins (1,00). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Amazonas, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa, principal exemplo Manaus (1,09529E-05). Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2002.

Tabela 24: Eficiência do Estado do AMAZONAS e DMU, ano 2002.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU       | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|-----------|-----------|----------------------------------------------|---------------------------------------------------------------|---------------|
|                                                  | Coari     | 73.075    | 0,003333333                                  | 0,787094751                                                   | Alta          |
| AM                                               | Guajará   | 13.583    | 0,01                                         | 1                                                             | Alta          |
|                                                  | Manaus    | 1.488.805 | 1,09529E-05                                  | 1                                                             | Alta          |
|                                                  | Parintins | 96.750    | 0,00030303                                   | 1                                                             | Alta          |

Fonte: Elaboração própria.

A Tabela 25 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Amapá no ano de 2002, sendo que o único município que apresentou eficiência Alta foi: Ferreira Gomes (1,00). Consegue-se, inferir com a leitura da tabela, por sua vez, que os municípios apresentaram classificação Alta de eficiência por tamanho de população, no combate ao crime de homicídio, foram: Ferreira Gomes (1,00), Laranjal do Jari (1,00), Macapá (1,00) e Santana (1,00). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Amapá, essencialmente, as diferenças de natureza socioeconômica, que estimadas no

modelo não apresentaram eficiência significativa, principal exemplo é Macapá (2,99401E-05). Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2002.

Tabela 25: Eficiência do Estado do AMAPÁ e DMU, ano 2002.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                 | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>(eftfp) | Classificação |
|--------------------------------------------------|---------------------|-----------|----------------------------------------------|------------------------------------------------------|---------------|
|                                                  | Ferreira<br>Gomes   | 3.817     | 1                                            | 1                                                    | Alta          |
| AP                                               | Laranjal do<br>Jari | 30.986    | 0,000588235                                  | 1                                                    | Alta          |
|                                                  | Macapá              | 306.583   | 2,99401E-05                                  | 1                                                    | Alta          |
|                                                  | Santana             | 87.478    | 0,000217391                                  | 1                                                    | Alta          |

Fonte: Elaboração própria.

A Tabela 26 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Mato Grosso no ano de 2002, sendo que o único município que apresentou eficiência Alta foi: Juína (1,00). Consegue-se, inferir com a leitura da tabela, por sua vez, que os municípios apresentaram classificação Alta de eficiência por tamanho de população, no combate ao crime de homicídio, foram: Campo Novo do Pareci (1,00), Campo Verde (1,00), Juína (1,00), São José dos Quatro Marcos (1,00), Sorriso (1,00) e Tangará da Serra (1,00). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Mato Grosso, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa, exceto o município de Juína já citado acima. Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2002.

Tabela 26: Eficiência do Estado do MATO GROSSO e DMU, ano 2002.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                     | População     | Eficiência<br>Total Geral<br>(eftg) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|-------------------------|---------------|-------------------------------------|---------------------------------------------------------------|---------------|
|                                                  | Araputanga              | 13910         | 0,002                               | 0,056603284                                                   | Baixa         |
| МТ                                               | Campo Novo<br>do Pareci | 20178         | 0,000333333                         | 1                                                             | Alta          |
| IVII                                             | Campo<br>Verde          | 19587         | 0,00037037                          | 1                                                             | Alta          |
|                                                  | Feliz Natal<br>Juína    | 7563<br>38446 | 0,001428571<br>1                    | 0,068802394<br>1                                              | Baixa<br>Alta |

| São J          | ose dos      |             |             |       |
|----------------|--------------|-------------|-------------|-------|
| Quati          | ro 19205     | 0,000769231 | 1           | Alta  |
| Marc           | os           |             |             |       |
| Rio E          | Branco 4957  | 0,005       | 0,679417272 | Média |
| Santa<br>Carm  | 3831         | 0,005       | 0,080604271 | Baixa |
| Sinop          | 82989        | 0,000140845 | 0,970799307 | Alta  |
| Sorris         | so 39877     | 0,000138889 | 1           | Alta  |
| Tanga<br>Serra | ara da 62675 | 0,00025     | 1           | Alta  |
| Vera           | 9751         | 0,0025      | 0,61319982  | Média |

A Tabela 27 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado de Rondônia no ano de 2002, sendo que o único município que apresentou eficiência Alta foi: Vilhena (1,00). Consegue-se, inferir com a leitura da tabela, por sua vez, que o município de Ariquemes (0,83) apresentou classificação Alta de eficiência por tamanho de população no combate ao crime de homicídio, sendo que Vilhena (0,57) apresentou classificação média. Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado de Rondônia, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa, exceto o município de Vilhena (1,00) citada acima. Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2002.

Tabela 27: Eficiência do Estado do RONDÔNIA e DMU, ano 2002.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU       | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>(eftfp) | Classificação |
|--------------------------------------------------|-----------|-----------|----------------------------------------------|------------------------------------------------------|---------------|
| RO                                               | Ariquemes | 78039     | 0,000116279                                  | 0,83316985                                           | Alta          |
|                                                  | Vilhena   | 57074     | 1                                            | 0,575202767                                          | Média         |

Fonte: Elaboração própria.

A Tabela 28 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado de Roraima no ano de 2002, sendo que o único município que apresentou eficiência Média foi: Boa Vista (0,56). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado

de Roraima, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa. Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2002.

Tabela 28: Eficiência do Estado do RORAIMA e DMU, ano 2002.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU       | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>(eftfp) | Classificação |
|--------------------------------------------------|-----------|-----------|----------------------------------------------|------------------------------------------------------|---------------|
| RR                                               | Boa Vista | 214541    | 4,20168E-05                                  | 0,561821867                                          | Média         |

Fonte: Elaboração própria.

## 5.2. Eficiência, ano base 2003.

A Tabela 29 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbitos por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Acre no ano de 2003, sendo que o único município que apresentou eficiência Média foi: Rio Branco (0,54). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Acre, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa. Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2003.

Tabela 29: Eficiência do Estado do ACRE e DMU, ano 2003.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU        | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|------------|-----------|----------------------------------------------|---------------------------------------------------------------|---------------|
| AC                                               | Rio Branco | 274555    | 4,13223E-05                                  | 0,543947467                                                   | Média         |

Fonte: Elaboração própria.

A Tabela 30 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Amazonas no ano de 2003. Consegue-se inferir com a leitura da tabela, que os municípios que apresentaram classificação Alta de eficiência no combate ao crime de homicídio, sendo tais: Coari (0,78), Guajará (1,00), Manaus (1,00) e Parintins (0,77). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Amazonas, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa,

principal exemplo Manaus (1,01626E-05). Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2003.

Tabela 30: Eficiência do Estado do AMAZONAS e DMU, ano 2003.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU              | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>(eftfp) | Classificação |
|--------------------------------------------------|------------------|-----------|----------------------------------------------|------------------------------------------------------|---------------|
|                                                  | Coari            | 75850     | 0,000769231                                  | 1                                                    | Alta          |
| AM                                               | Guajará          | 13751     | 0,005                                        | 1                                                    | Alta          |
| 2 22/2                                           | Manaus           | 1527314   | 1,01626E-05                                  | 1                                                    | Alta          |
|                                                  | <b>Parintins</b> | 99813     | 0,000322581                                  | 0,776148404                                          | Alta          |

Fonte: Elaboração própria.

A Tabela 31 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Amapá no ano de 2003. Consegue-se, inferir com a leitura da tabela, por sua vez, que os municípios apresentaram classificação Alta de eficiência por tamanho de população, no combate ao crime de homicídio, foram: Laranjal do Jari (1,00), Macapá (1,00) e Santana (0,93). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Amapá, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa, principal exemplo é Macapá (3,27869E-05). Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2003.

Tabela 31: Eficiência do Estado do AMAPÁ e DMU, ano 2003.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                 | População | Eficiência<br>Total Geral<br>(eftg) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|---------------------|-----------|-------------------------------------|---------------------------------------------------------------|---------------|
| AP                                               | Laranjal do<br>Jari | 32133     | 0,001111111                         | 1                                                             | Alta          |
| 111                                              | Macapá              | 318761    | 3,27869E-05                         | 1                                                             | Alta          |
|                                                  | Santana             | 89369     | 0,000175439                         | 0,933701573                                                   | Alta          |

Fonte: Elaboração própria.

A Tabela 32 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Mato Grosso no ano de 2003, sendo que os únicos municípios que apresentou eficiência Alta foram: Luciara (1,00) e Santa Rita do Trivelato

(1,00). Consegue-se, inferir com a leitura da tabela, por sua vez, que os municípios que apresentaram classificação Alta de eficiência, por tamanho de população, no combate ao crime de homicídio, foram: Barra do Bugres (1,00), Barra do Garças (1,00), Campo verde (1,00), Confresa (1,00), Feliz natal (1,00), Juína (1,00), Luciara (1,00), Sinop (1,00), Tangara da Serra (1,00), Várzea grande (1,00), Campo Novo do Parecis (0,76). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Mato Grosso, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa, exceto o município de Luciara (1,00) e Santa Rita do Trivelato (1,00). Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2003.

Tabela 32: Eficiência do Estado do MATO GROSSO e DMU, ano 2003.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                     | População | Eficiência<br>Total Geral<br>(eftg) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|-------------------------|-----------|-------------------------------------|---------------------------------------------------------------|---------------|
|                                                  | Barra do<br>Bugres      | 29717     | 0,000588235                         | 1                                                             | Alta          |
|                                                  | Barra do<br>Garças      | 54076     | 0,000185185                         | 1                                                             | Alta          |
|                                                  | Campo verde             | 20685     | 0,000666667                         | 1                                                             | Alta          |
|                                                  | Confresa                | 22323     | 0,000434783                         | 1                                                             | Alta          |
|                                                  | Feliz natal             | 7931      | 0,002                               | 1                                                             | Alta          |
|                                                  | Juína                   | 38646     | 0,000212766                         | 1                                                             | Alta          |
|                                                  | Luciara                 | 2310      | 1                                   | 1                                                             | Alta          |
| MT                                               | Sinop                   | 86775     | 0,000243902                         | 1                                                             | Alta          |
| 1,11                                             | Sorriso                 | 41860     | 0,000133333                         | 1                                                             | Alta          |
|                                                  | Tangara da<br>Serra     | 64455     | 0,000192308                         | 1                                                             | Alta          |
|                                                  | Várzea<br>grande        | 231736    | 5,91716E-05                         | 1                                                             | Alta          |
|                                                  | Campo novo do Parecis   | 21358     | 0,000526316                         | 0,765138848                                                   | Alta          |
|                                                  | Santa Rita do trivelato | 1415      | 1                                   | 0,358183898                                                   | Regular       |
|                                                  | Marcelândia             | 16193     | 0,000769231                         | 0,312040497                                                   | Regular       |

Fonte: Elaboração própria.

A Tabela 33 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado de Rondônia no ano de 2003, no qual todos os municípios apresentaram eficiência Baixa, com destaque para Ariquemes (8,40336E-05). Consegue-se, inferir com a leitura da tabela, por sua vez, que os municípios apresentaram

classificação Alta de eficiência por tamanho de população no combate ao crime de homicídio, sendo tais: Cerejeiras (1,00), Pimenta Bueno (1,00), Ariquemes (0,97). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado de Rondônia, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa. Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2003.

Tabela 33: Eficiência do Estado de RONDONIA e DMU, ano 2003.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>(eftfp) | Classificação |
|--------------------------------------------------|--------------------|-----------|----------------------------------------------|------------------------------------------------------|---------------|
| RO                                               | Cerejeiras         | 17794     | 0,001666667                                  | 1                                                    | Alta          |
|                                                  | Pimenta<br>Bueno   | 31612     | 0,000416667                                  | 1                                                    | Alta          |
|                                                  | Ariquemes          | 79680     | 8,40336E-05                                  | 0,970005517                                          | Alta          |
|                                                  | Espigão<br>d'oeste | 26468     | 0,000384615                                  | 0,132550775                                          | Baixa         |

Fonte: Elaboração própria.

A Tabela 34 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbitos por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado de Roraima no ano de 2003, sendo que o único município que apresentou eficiência Alta foi: Boa Vista (0,88). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado de Roraima, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa. Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2003.

Tabela 34: Eficiência do Estado de RORAIMA e DMU, ano 2003.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU       | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>(eftfp) | Classificação |
|--------------------------------------------------|-----------|-----------|----------------------------------------------|------------------------------------------------------|---------------|
| RR                                               | Boa vista | 221027    | 5,12821E-05                                  | 0,889086483                                          | Alto          |

Fonte: Elaboração própria.

#### 5.3. Eficiência, ano base 2004.

A Tabela 35 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbitos por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Acre no ano de 2004, sendo que o único município que apresentou eficiência Alta foi: Capixaba (1,00). Consegue-se, inferir com a leitura da tabela, por sua vez, que os municípios apresentaram classificação Alta de eficiência por tamanho de população no combate ao crime de homicídio, sendo tais: Capixaba (1,00) e Rio Branco (1,00). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Acre, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa. Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2004.

Tabela 35: Eficiência do Estado de ACRE e DMU, ano 2004.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU        | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|------------|-----------|----------------------------------------------|---------------------------------------------------------------|---------------|
| AC                                               | Capixaba   | 6287      | 1                                            | 1                                                             | Alta          |
|                                                  | Rio Branco | 286082    | 0,00005                                      | 1                                                             | Alta          |

Fonte: Elaboração própria.

A Tabela 36 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbitos por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Amazonas no ano de 2004. Consegue-se inferir com a leitura da tabela, que os municípios que apresentaram classificação Alta de eficiência no combate ao crime de homicídio, foram: Coari (1,00) e Manaus (1,00). Por sua vez, apresentaram classificação Média: Guajará (0,61) e Parintins (0,59). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Amazonas, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa, principal exemplo Manaus (9,5E-06). Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2004.

Tabela 36: Eficiência do Estado de AMAZONAS e DMU, ano 2004.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU       | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|-----------|-----------|----------------------------------------------|---------------------------------------------------------------|---------------|
|                                                  | Coari     | 80552     | 0,001                                        | 1                                                             | Alta          |
| AM                                               | Manaus    | 1592555   | 9,5E-06                                      | 1                                                             | Alta          |
|                                                  | Guajará   | 11873     | 0,003333                                     | 0,61524                                                       | Média         |
|                                                  | Parintins | 105002    | 0,000313                                     | 0,59958                                                       | Média         |

A Tabela 37 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbitos por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Amapá no ano de 2004. Consegue-se, inferir com a leitura da tabela, por sua vez, que os municípios apresentaram classificação Alta de eficiência por tamanho de população, no combate ao crime de homicídio, foram: Laranjal do Jari (1,00), Macapá (1,00) e Santana (1,00). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Amapá, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa, principal exemplo é Macapá (3,39E-05). Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2004.

Tabela 37: Eficiência do Estado de AMAPÁ e DMU, ano 2004.

|                                                  |                     |           | - ,                                          |                                                               |               |
|--------------------------------------------------|---------------------|-----------|----------------------------------------------|---------------------------------------------------------------|---------------|
| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                 | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
| AP                                               | Laranjal do<br>Jari | 32919     | 0,001667                                     | 1                                                             | Alta          |
| 111                                              | Santana             | 91310     | 0,000208                                     | 1                                                             | Alta          |
|                                                  | Macapá              | 326466    | 3,39E-05                                     | 1                                                             | Alta          |

Fonte: Elaboração própria.

A Tabela 38 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbitos por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Mato Grosso no ano de 2004, sendo que os únicos municípios que apresentou eficiência Alta foram: Luciara (1,00) e Santa Rita do Trivelato (1,00). Consegue-se, inferir com a leitura da tabela, por sua vez, que os municípios que apresentaram classificação Alta de eficiência, por tamanho de população, no combate ao crime de homicídio, foram: Barra do Bugres (0,97), Barra do Garças (0,87), Campo verde (1,00), Feliz natal (1,00), Juína (1,00), Sinop (1,00), Tangara da Serra (1,00), Várzea grande (1,00), Campo Novo do Parecis (1,00), Sorriso (1,00), Matupá (1,00). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Mato Grosso, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa, exceto o município de Araguaína (1,00). Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2004.

Tabela 38: Eficiência do Estado de MATO GROSSO e DMU, ano 2004.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                        | População | Eficiência<br>Total Geral<br>(eftg) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|----------------------------|-----------|-------------------------------------|---------------------------------------------------------------|---------------|
|                                                  | Campo novo do Parecis      | 23833     | 0,000556                            | 1                                                             | Alta          |
|                                                  | Campo verde                | 22991     | 0,000323                            | 1                                                             | Alta          |
|                                                  | Feliz natal                | 8704      | 0,000588                            | 1                                                             | Alta          |
|                                                  | Juína                      | 39064     | 0,000286                            | 1                                                             | Alta          |
|                                                  | Matupá                     | 11837     | 0,004124                            | 1                                                             | Alta          |
|                                                  | Sinop                      | 94724     | 0,000137                            | 1                                                             | Alta          |
|                                                  | Sorriso                    | 46023     | 0,000125                            | 1                                                             | Alta          |
|                                                  | Tangara da<br>Serra        | 68191     | 0,000145                            | 1                                                             | Alta          |
|                                                  | Várzea<br>Grande           | 242674    | 5,56E-05                            | 1                                                             | Alta          |
| MT                                               | Barra do<br>Bugres         | 31095     | 0,0005                              | 0,97563                                                       | Alta          |
|                                                  | Barra do<br>Garças         | 55397     | 0,000227                            | 0,87795                                                       | Alta          |
|                                                  | Guarantã do norte          | 32081     | 0,000435                            | 0,69714                                                       | Média         |
|                                                  | Marcelândia                | 17353     | 0,000667                            | 0,61829                                                       | Média         |
|                                                  | Terra nova do norte        | 12181     | 0,001                               | 0,40771                                                       | Regular       |
|                                                  | Santa Rita do<br>Trivelato | 1613      | 0,005                               | 0,09396                                                       | Baixa         |
|                                                  | Confresa                   | 25305     | 0,000385                            | 0,08043                                                       | Baixa         |
|                                                  | Luciara                    | 2188      | 0,01                                | 0,03268                                                       | Baixa         |
|                                                  | Araguaína                  | 1319      | 1                                   | 0,0289                                                        | Baixa         |

A Tabela 39 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbitos por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado de Rondônia no ano de 2004, no qual todos os municípios apresentaram eficiência Baixa, com destaque para Ariquemes (0,000103). Consegue-se, inferir com a leitura da tabela, por sua vez, que os municípios apresentaram classificação Alta de eficiência por tamanho de população no combate ao crime de homicídio, sendo tais: Ariquemes (1,00) e Rolim de Moura (1,00). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado de Rondônia, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa. Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2004.

Tabela 39: Eficiência do Estado de RONDONIA e DMU, ano 2004.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|--------------------|-----------|----------------------------------------------|---------------------------------------------------------------|---------------|
|                                                  | Ariquemes          | 86901     | 0,000103                                     | 1                                                             | Alta          |
| RO                                               | Rolim de<br>Moura  | 49902     | 0,000357                                     | 1                                                             | Alta          |
|                                                  | Espigão<br>d'Oeste | 27556     | 0,000476                                     | 0,07726                                                       | Baixa         |

A Tabela 40 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbitos por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado de Roraima no ano de 2004, sendo que o município que apresentou eficiência Alta foi: Boa Vista (0,77). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado de Roraima, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa. Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2004.

Tabela 40: Eficiência do Estado de RORAIMA e DMU, ano 2004.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU       | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|-----------|-----------|----------------------------------------------|---------------------------------------------------------------|---------------|
| RR                                               | Boa Vista | 236319    | 4,83E-05                                     | 0,77802                                                       | Alta          |

Fonte: Elaboração própria.

## 5.4. Eficiência, ano base 2005.

A Tabela 41 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbitos por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Acre no ano de 2005. Consegue-se, inferir com a leitura da tabela, por sua vez, que o município que apresentou classificação Alta de eficiência por tamanho de população no combate ao crime de homicídio, foi: Rio Branco (0,85). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Acre, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa. Não foi possível calcular

estimativas de escores de eficiência para os demais municípios neste período analisado de 2005.

Tabela 41: Eficiência do Estado de ACRE e DMU, ano 2005.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU        | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|------------|-----------|----------------------------------------------|---------------------------------------------------------------|---------------|
| AC                                               | Rio Branco | 305731    | 5,03E-05                                     | 0,855373                                                      | Alta          |

Fonte: Elaboração própria.

A Tabela 42 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbitos por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Amazonas no ano de 2005. Consegue-se inferir com a leitura da tabela, que os municípios que apresentaram classificação Alta de eficiência no combate ao crime de homicídio, foram: Coari (1,00), Eirunepé (1,00), Iranduba (1,00), Manaus (1,00) e Urucurituba (0,85). Por sua vez, apresentaram classificação Média: Guajará (0,59) e Parintins (0,56). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Amazonas, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa, principal exemplo Manaus (9,49E-06). Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2005.

Tabela 42: Eficiência do Estado de AMAZONAS e DMU, ano 2005.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU         | População | Eficiência<br>Total Geral<br>(eftg) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|-------------|-----------|-------------------------------------|---------------------------------------------------------------|---------------|
|                                                  | Coari       | 84309     | 0,000526                            | 1                                                             | Alta          |
|                                                  | Eirunepé    | 29492     | 0,003333                            | 1                                                             | Alta          |
|                                                  | Iranduba    | 40436     | 0,01                                | 1                                                             | Alta          |
| AM                                               | Manaus      | 1644690   | 9,49E-06                            | 1                                                             | Alta          |
|                                                  | Urucurituba | 8988      | 0,000667                            | 0,856933                                                      | Alta          |
|                                                  | Guajará     | 12066     | 0,01                                | 0,593904                                                      | Média         |
|                                                  | Parintins   | 109150    | 0,000294                            | 0,564847                                                      | Média         |

Fonte: Elaboração própria.

A Tabela 43 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Amapá no ano de 2005. Consegue-se, inferir com a leitura da tabela, por sua vez, que os municípios apresentaram classificação Alta de eficiência

por tamanho de população, no combate ao crime de homicídio, foram: Macapá (1,00) e Laranjal do Jari (0,75). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Amapá, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa, principal exemplo é Macapá (3,37E-05). Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2005.

Tabela 43: Eficiência do Estado de AMAPÁ e DMU, ano 2005.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                 | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|---------------------|-----------|----------------------------------------------|---------------------------------------------------------------|---------------|
|                                                  | Macapá              | 355408    | 3,37E-05                                     | 1                                                             | Alta          |
| AP                                               | Laranjal do<br>Jari | 35872     | 0,0005                                       | 0,756985                                                      | Alta          |
|                                                  | Santana             | 98600     | 0,000182                                     | 0,444784                                                      | Regular       |

Fonte: Elaboração própria.

A Tabela 44 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbitos por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Mato Grosso no ano de 2005, sendo que o único município que apresentou eficiência Alta foi: Luciara (1,00). Consegue-se, inferir com a leitura da tabela, por sua vez, que os municípios que apresentaram classificação Alta de eficiência, por tamanho de população, no combate ao crime de homicídio, foram: Barra do Bugres (1,00), Barra do Garças (0,79), Campo verde (1,00), Juína (1,00), Sapezal (1,00), Sinop (1,00), Tangara da Serra (1,00), Várzea grande (1,00), Campo Novo do Parecis (1,00), Sorriso (1,00), Matupá (1,00), Feliz Natal (0,95). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Mato Grosso, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa. Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2005.

Tabela 44: Eficiência do Estado de MATO GROSSO e DMU, ano 2005.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU             | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por<br>Tamanho da<br>População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|-----------------|-----------|----------------------------------------------|------------------------------------------------------------------|---------------|
| MT                                               | Barra do Bugres | 31923     | 0,000455                                     | 1                                                                | Alta          |
| 2.22                                             | Campo novo do   | 25202     | 0,00027                                      | 1                                                                | Alta          |

|         | Parecis                 |        |          |          |         |
|---------|-------------------------|--------|----------|----------|---------|
|         | Juína                   | 39296  | 0,000233 | 1        | Alta    |
|         | Matupá                  | 11958  | 0,000833 | 1        | Alta    |
|         | Sapezal                 | 11926  | 0,000909 | 1        | Alta    |
|         | Sinop                   | 99490  | 0,000167 | 1        | Alta    |
|         | Sorriso                 | 48326  | 0,000143 | 1        | Alta    |
|         | Tangara da serra        | 70259  | 0,000149 | 1        | Alta    |
|         | Várzea grande           | 248728 | 5,21E-05 | 1        | Alta    |
|         | Feliz natal             | 9132   | 0,00125  | 0,954187 | Alta    |
|         | Barra do Garças         | 56127  | 0,000333 | 0,79433  | Alta    |
|         | Campo verde             | 24267  | 0,000455 | 0,717071 | Média   |
|         | Guarantã do norte       | 32940  | 0,000799 | 0,589424 | Média   |
|         | Terra nova do norte     | 11846  | 0,001304 | 0,342904 | Regular |
|         | Santa Rita do trivelato | 1688   | 0,003333 | 0,317052 | Regular |
|         | Alto taquari            | 5392   | 0,001111 | 0,304826 | Regular |
|         | Luciara                 | 2120   | 1        | 0,242836 | Baixa   |
|         | Colniza                 | 13562  | 0,000313 | 0,234239 | Baixa   |
|         | Confresa                | 26955  | 0,000625 | 0,060711 | Baixa   |
|         | Araguaína               | 1312   | 0,01     | 0,046987 | Baixa   |
|         | Paranatinga             | 15755  | 0,0005   | 0,025483 | Baixa   |
|         | Marcelândia             | 17996  | 0,000625 | 0,011034 | Baixa   |
| . 131.1 | ~ / ·                   |        |          |          |         |

A Tabela 45 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado de Rondônia no ano de 2005, no qual todos os municípios apresentaram eficiência Baixa, com destaque para Ariquemes (9,17E-05). Consegue-se, inferir com a leitura da tabela, por sua vez, que os municípios apresentaram classificação Alta de eficiência por tamanho de população no combate ao crime de homicídio, sendo tais: Porto Velho (1,00), Rolim de Moura (1,00) e Ariquemes (0,87). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado de Rondônia, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa. Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2005.

Tabela 45: Eficiência do Estado de RONDÔNIA e DMU, ano 2005.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU         | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|-------------|-----------|----------------------------------------------|---------------------------------------------------------------|---------------|
| RO                                               | Porto Velho | 373917    | 1,91E-05                                     | 1                                                             | Alta          |

| Rolim de<br>Moura  | 49522 | 0,000556 | 1        | Alta    |
|--------------------|-------|----------|----------|---------|
| Ariquemes          | 85031 | 9,17E-05 | 0,878353 | Alta    |
| Jaru               | 55840 | 0,000303 | 0,499361 | Regular |
| Espigão<br>d'oeste | 27274 | 0,000556 | 0,029478 | Baixa   |

A Tabela 46 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado de Roraima no ano de 2005, sendo que o município que apresentou eficiência Alta foi: Caracaraí (1,00). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado de Roraima, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa. Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2005.

Tabela 46: Eficiência do Estado de RORAIMA e DMU, ano 2005.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU       | População | Eficiência<br>Total Geral<br>(eftg) | Eficiência<br>por Tamanho<br>da População<br>(eftfp) | Classificação |
|--------------------------------------------------|-----------|-----------|-------------------------------------|------------------------------------------------------|---------------|
| RR                                               | Caracaraí | 17746     | 0,000526                            | ( <i>ejijp</i> )<br>1                                | Alta          |
|                                                  | Boa Vista | 242179    | 5,71E-05                            | 0,42257                                              | Baixa         |

Fonte: Elaboração própria.

#### 5.5. Eficiência, ano base 2006.

A Tabela 47 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Acre no ano de 2006. Consegue-se, inferir com a leitura da tabela, por sua vez, que o município que apresentou classificação Alta de eficiência por tamanho de população no combate ao crime de homicídio, foi: Rio Branco (0,87). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Acre, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa (4,31034E-05). Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2006.

Tabela 47: Eficiência do Estado do ACRE e DMU, ano 2006.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU        | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|------------|-----------|----------------------------------------------|---------------------------------------------------------------|---------------|
| AC                                               | Rio Branco | 314127    | 4,31034E-05                                  | 0,879938697                                                   | Alta          |

A Tabela 48 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Amazonas no ano de 2006. Consegue-se inferir com a leitura da tabela, que os municípios que apresentaram classificação Alta de eficiência no combate ao crime de homicídio, foram: Coari (1,00), Eirunepé (1,00), Manacapuru (1,00), Manaus (1,00) e Tabatinga (0,79). Por sua vez, apresentaram classificação Média: Iranduba (0,58) e Urucurituba (0,50). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Amazonas, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa, principal exemplo Manaus (8,51064E-06). Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2006.

Tabela 48: Eficiência do Estado do AMAZONAS e DMU, ano 2006.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU         | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|-------------|-----------|----------------------------------------------|---------------------------------------------------------------|---------------|
|                                                  | Coari       | 87468     | 0,001428571                                  | 1                                                             | Alta          |
|                                                  | Eirunepé    | 30125     | 0,005                                        | 1                                                             | Alta          |
|                                                  | Manacapuru  | 84656     | 0,0004                                       | 1                                                             | Alta          |
| AM                                               | Manaus      | 1688524   | 8,51064E-06                                  | 1                                                             | Alta          |
|                                                  | Tabatinga   | 45085     | 0,000333333                                  | 0,796513841                                                   | Alta          |
|                                                  | Iranduba    | 42812     | 0,01                                         | 0,584864291                                                   | Média         |
|                                                  | Urucurituba | 8386      | 0,005                                        | 0,508350581                                                   | Média         |
|                                                  | Parintins   | 112636    | 0,00030303                                   | 0,401863257                                                   | Regular       |

Fonte: Elaboração própria.

A Tabela 49 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Amapá no ano de 2006. Consegue-se, inferir com a leitura da tabela, por sua vez, que o município que apresentou classificação Alta de eficiência por tamanho de população, no combate ao crime de homicídio, foi: Macapá (1,00). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Amapá, essencialmente, as diferenças de natureza socioeconômica,

que estimadas no modelo não apresentaram eficiência significativa, principal exemplo é Macapá (3,40136E-05). Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2006.

Tabela 49: Eficiência do Estado do AMAPÁ e DMU, ano 2006.

| 1 400 4144 191 2211                              | •1•11•10 to 25000   |           | 21:10, 4:10 2000                             | •                                                             |               |
|--------------------------------------------------|---------------------|-----------|----------------------------------------------|---------------------------------------------------------------|---------------|
| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                 | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|                                                  | Macapá              | 368367    | 3,40136E-05                                  | 1                                                             | Alta          |
| AP                                               | Laranjal do<br>Jari | 37194     | 0,000416667                                  | 0,688469415                                                   | Média         |
|                                                  | Santana             | 101864    | 0,000208333                                  | 0,628992424                                                   | Média         |

Fonte: Elaboração própria.

A Tabela 50 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Mato Grosso no ano de 2006, sendo que os únicos municípios que apresentou eficiência Alta foram: Serra Nova Dourada (1,00), Terra nova do Norte (1,00), Bacabal (1,00) e Araguaína (1,00). Consegue-se, inferir com a leitura da tabela, por sua vez, que os municípios que apresentaram classificação Alta de eficiência, por tamanho de população, no combate ao crime de homicídio, foram: Barra do Bugres (1,00), Barra do Garças (0,79), Campo verde (1,00), Cuiabá (1,00), Curvelandia (1,00), Guarantã do norte (1,00), Juína (1,00), Serra Nova Dourada (1,00), Sinop (1,00), Sorriso (1,00), Tangara da Serra (1,00), Várzea grande (1,00), Campo Novo do Parecis (1,00), Sorriso (1,00), Matupá (1,00), Terra Nova do Norte (1,00), Marcelândia (0,99), Pedra Preta (0,84), Confresa (0,81) e Campo Verde (0,80). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Mato Grosso, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa. Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2006.

Tabela 50: Eficiência do Estado do MATO GROSSO e DMU, ano 2006.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU             | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por<br>Tamanho da<br>População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|-----------------|-----------|----------------------------------------------|------------------------------------------------------------------|---------------|
| MT                                               | Barra do Bugres | 32744     | 0,000294118                                  | 1                                                                | Alta          |
| 2.22                                             | Barra do Garças | 56853     | 0,0003125                                    | 1                                                                | Alta          |

| Campo novo do     | 26562  | 0,000434783 | 1           | Alta    |
|-------------------|--------|-------------|-------------|---------|
| Parecis           | 20302  | 0,000434763 | 1           | Alla    |
| Cuiabá            | 542861 | 1,81488E-05 | 1           | Alta    |
| Curvelandia       | 4967   | 0,003333333 | 1           | Alta    |
| Guarantã do norte | 33791  | 0,000333333 | 1           | Alta    |
| Juína             | 39526  | 0,000222222 | 1           | Alta    |
| Matupá            | 12078  | 0,000588235 | 1           | Alta    |
| Serra nova        | 1345   | 1           | 1           | Alta    |
| dourada           | 1343   |             | 1           |         |
| Sinop             | 103868 | 0,000172414 | 1           | Alta    |
| Sorriso           | 50613  | 0,000136986 | 1           | Alta    |
| Tangara da serra  | 72311  | 0,000138889 | 1           | Alta    |
| Terra nova do     | 11514  | 1           | 1           | Alta    |
| norte             | 11314  | 1           | 1           | Alla    |
| Várzea grande     | 254736 | 4,4444E-05  | 1           | Alta    |
| Marcelândia       | 18634  | 0,000769231 | 0,991242832 | Alta    |
| Pedra preta       | 15375  | 0,000526316 | 0,841646635 | Alta    |
| Confresa          | 28594  | 0,000526316 | 0,810069071 | Alta    |
| Campo verde       | 25533  | 0,000344828 | 0,805853162 | Alta    |
| Sapezal           | 12656  | 0,000714286 | 0,633151729 | Média   |
| Alto Araguaia     | 11883  | 0,000666667 | 0,414049706 | Regular |
| Guiratinga        | 11085  | 0,00125     | 0,391579055 | Regular |
| Itauba            | 6491   | 0,001428571 | 0,344188175 | Regular |
| Reserva do        | 1679   | 1           | 0,288720663 | Regular |
| Bacabal           | 1079   | 1           | 0,288720003 | Regulai |
| Alto taquari      | 5557   | 0,001428571 | 0,241825653 | Baixa   |
| Castanheira       | 6920   | 0,005       | 0,169496613 | Baixa   |
| São José do povo  | 3139   | 0,002       | 0,098206968 | Baixa   |
| Santa Rita do     | 1763   | 0,003333333 | 0,069412733 | Baixa   |
| trivelato         | 1703   | 0,00333333  | 0,009412733 | Daixa   |
| Novo santo        | 1165   | 0,01        | 0,062463273 | Baixa   |
| Antônio           | 1103   | 0,01        | 0,002403273 | Daixa   |
| Luciara           | 2053   | 0,0025      | 0,043547399 | Baixa   |
| Ipiranga do norte | 2236   | 0,01        | 0,035467627 | Baixa   |
| Araguaína         | 1305   | 1           | 0,032893212 | Baixa   |
| Lambari d'oeste   | 3535   | 0,003333333 | 0,012361454 | Baixa   |

A Tabela 51 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado de Rondônia no ano de 2006, no qual todos os municípios apresentaram eficiência Baixa, com destaque para Ariquemes (9,25926E-05). Consegue-se, inferir com a leitura da tabela, por sua vez, que os municípios apresentaram classificação Alta de eficiência por tamanho de população no combate ao crime de homicídio, sendo tais: Rolim de Moura (1,00), Jaru (0,94), e Guajará-Mirim (0,93). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o

Estado de Rondônia, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa. Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2006.

Tabela 51: Eficiência do Estado de RONDÔNIA e DMU, ano 2006.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|--------------------|-----------|----------------------------------------------|---------------------------------------------------------------|---------------|
|                                                  | Rolim de<br>moura  | 49907     | 0,00047619                                   | 1                                                             | Alta          |
|                                                  | Jaru               | 56242     | 0,00037037                                   | 0,940962315                                                   | Alta          |
| RO                                               | Guajará-<br>Mirim  | 42082     | 0,0005                                       | 0,936122949                                                   | Alta          |
|                                                  | Cacoal             | 76422     | 0,000153846                                  | 0,686996378                                                   | Média         |
|                                                  | Ariquemes          | 86924     | 9,25926E-05                                  | 0,614858818                                                   | Média         |
|                                                  | Espigão<br>d'oeste | 27559     | 0,001666667                                  | 0,314332406                                                   | Baixa         |

Fonte: Elaboração própria.

A Tabela 52 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado de Roraima no ano de 2006. Consegue-se, inferir com a leitura da tabela, por sua vez, que o município que apresentou classificação Alta de eficiência por tamanho de população no combate ao crime de homicídio, foi: Caracaraí (1,00). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado de Roraima, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa. Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2006.

Tabela 52: Eficiência do Estado de RORAIMA e DMU, ano 2006.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU       | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|-----------|-----------|----------------------------------------------|---------------------------------------------------------------|---------------|
| RR                                               | Caracaraí | 18367     | 0,0005                                       | 1                                                             | Alta          |
|                                                  | Boa Vista | 249655    | 5,18135E-05                                  | 0,565109761                                                   | Média         |

Fonte: Elaboração própria.

A Tabela 53 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Acre no ano de 2007. Consegue-se, inferir com a leitura da tabela, por sua vez, que o município que apresentou classificação Alta de eficiência por tamanho de população no combate ao crime de homicídio, foi: Rio Branco (1,00). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Acre, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa (3,89E-05). Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2007.

Tabela 53: Eficiência do Estado do ACRE e DMU, ano 2007.

| Tuocia eei Eii                                   | eremena ao Estac | to do Herte e Br | 110, 4110 20071                              |                                                               |               |
|--------------------------------------------------|------------------|------------------|----------------------------------------------|---------------------------------------------------------------|---------------|
| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU              | População        | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|                                                  | Rio Branco       | 290639           | 3,89E-05                                     | 1                                                             | Alta          |
| AC                                               | Manoel<br>Urbano | 7148             | 0,005                                        | 0,359013                                                      | Baixa         |
|                                                  | Orbano           |                  |                                              |                                                               |               |

Fonte: Elaboração própria.

A Tabela 54 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Amazonas no ano de 2007. Consegue-se inferir com a leitura da tabela, que os municípios que apresentaram classificação Alta de eficiência no combate ao crime de homicídio, foram: Coari (1,00), Eirunepé (1,00), Iranduba (1,00), Manaus (1,00), Urucurituba (1,00), Tabatinga (0,80) e Manacapuru (0,75). Por sua vez, apresentaram classificação Média: Parintins (0,67) e Rio Preto da Eva (0,54). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Amazonas, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa, principal exemplo Manaus (8,85E-06). Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2007.

Tabela 54: Eficiência do Estado do AMAZONAS e DMU, ano 2007.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                 | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|---------------------|-----------|----------------------------------------------|---------------------------------------------------------------|---------------|
|                                                  | Coari               | 65222     | 0,0025                                       | 1                                                             | Alta          |
|                                                  | Eirunepé            | 29411     | 0,000909                                     | 1                                                             | Alta          |
|                                                  | Iranduba            | 32869     | 0,005                                        | 1                                                             | Alta          |
|                                                  | Manaus              | 1646602   | 8,85E-06                                     | 1                                                             | Alta          |
|                                                  | Urucurituba         | 17184     | 0,01                                         | 1                                                             | Alta          |
| AM                                               | Tabatinga           | 45293     | 0,000333                                     | 0,802249                                                      | Alta          |
|                                                  | Manacapuru          | 82309     | 0,000417                                     | 0,753126                                                      | Alta          |
|                                                  | <b>Parintins</b>    | 102044    | 0,000333                                     | 0,678596                                                      | Média         |
|                                                  | Rio Preto da<br>Eva | 24858     | 0,000667                                     | 0,543139                                                      | Média         |
|                                                  | Barcelos            | 24567     | 0,000625                                     | 0,369081                                                      | Baixa         |

A Tabela 55 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Amapá no ano de 2007. Consegue-se, inferir com a leitura da tabela, por sua vez, que os municípios que apresentaram classificação Alta de eficiência por tamanho de população, no combate ao crime de homicídio, foram: Macapá (1,00) e Santana (0,75). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Amapá, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa, principal exemplo é Macapá (3,64E-05). Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2007.

Tabela 55: Eficiência do Estado do AMAPÁ e DMU, ano 2007.

| Tabela 33. Lii                                   | ciciicia do Estad   | 0 40 7 HVI7 H 7 I C | DIVIO, and 2007                              | •                                                             |               |
|--------------------------------------------------|---------------------|---------------------|----------------------------------------------|---------------------------------------------------------------|---------------|
| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                 | População           | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|                                                  | Macapá              | 344153              | 3,64E-05                                     | 1                                                             | Alta          |
| AP                                               | Santana             | 92098               | 0,00025                                      | 0,758138                                                      | Alta          |
| AP                                               | Laranjal do<br>Jari | 37491               | 0,000625                                     | 0,611649                                                      | Média         |

Fonte: Elaboração própria.

A Tabela 56 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Mato Grosso no ano de 2007, sendo que os únicos

municípios que apresentou eficiência Alta foram: Serra Nova Dourada (1,00), Terra nova do Norte (1,00) e Santa Rita do Trivelato. Consegue-se, inferir com a leitura da tabela, por sua vez, que os municípios que apresentaram classificação Alta de eficiência, por tamanho de população, no combate ao crime de homicídio, foram: Alto Araguaia (1,00), Cuiabá (1,00), Guarantã do norte (1,00), Juína (1,00), Matupá (1,00), Sapezal (1,00), Serra Nova Dourada (1,00), Sinop (1,00), Tangara da Serra (1,00), Terra Nova do Norte, Barra do Bugres (0,99), Várzea Grande (0,94) e Sorriso (0,85). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Mato Grosso, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa. Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2007.

Tabela 56: Eficiência do Estado do MATO GROSSO e DMU, ano 2007.

| 1 aocia 50. El | iciciicia do Estado de | WILLIA OILO | bbo c Divio, a |            |               |
|----------------|------------------------|-------------|----------------|------------|---------------|
| Unidade        |                        |             | Eficiência     | Eficiência |               |
| Federada da    | DMII                   | População   |                | por        | C1:C~         |
| Amazônia       | DMU                    | 1 3         | Total Geral    | Tamanho da | Classificação |
| Legal (UF)     |                        |             | (eftg)         | População  |               |
|                |                        |             |                | (eftfp)    |               |
|                | Alto Araguaia          | 13790       | 0,0005         | 1          | Alta          |
|                | Cuiabá                 | 526830      | 1,82E-05       | 1          | Alta          |
|                | Guarantã do norte      | 30754       | 0,000667       | 1          | Alta          |
|                | Juína                  | 38422       | 0,000185       | 1          | Alta          |
|                | Matupá                 | 14243       | 0,001111       | 1          | Alta          |
|                | Sapezal                | 14254       | 0,000833       | 1          | Alta          |
|                | Serra Nova             | 1349        | 1              | 1          | Alta          |
|                | Dourada                | 1349        | 1              | 1          | Alla          |
|                | Sinop                  | 105762      | 0,000116       | 1          | Alta          |
|                | Tangara da Serra       | 76657       | 0,000127       | 1          | Alta          |
|                | Terra Nova do          | 14584       | 1              | 1          | Alta          |
|                | Norte                  |             | 1              | 1          | Alla          |
| MT             | Barra do Bugres        | 32490       | 0,0005         | 0,994783   | Alta          |
| 1,11           | Várzea Grande          | 230307      | 4,88E-05       | 0,949868   | Alta          |
|                | Sorriso                | 55134       | 0,000139       | 0,856533   | Alta          |
|                | Barra do Garças        | 53243       | 0,000323       | 0,707594   | Média         |
|                | Campo verde            | 25924       | 0,000357       | 0,63332    | Média         |
|                | Colíder                | 30695       | 0,0005         | 0,625342   | Média         |
|                | Pedra preta            | 15638       | 0,000769       | 0,589755   | Média         |
|                | Santa Rita do          | 2.470       |                | 0.467202   | ъ 1           |
|                | Trivelato              | 2478        | 1              | 0,467202   | Regular       |
|                | Campo novo do          | 2222        | 0.00000        | 0.464655   | ъ             |
|                | Parecis                | 22322       | 0,000909       | 0,464657   | Regular       |
|                | Castanheira            | 7808        | 0,001429       | 0,460211   | Regular       |
|                | Itauba                 | 4625        | 0,01           | 0,405891   | Regular       |
|                | Reserva do             | 2505        | 0,005          | 0,381449   | Regular       |
|                | 110001 14 40           | 2000        | 0,002          | 3,201117   | 11080101      |

| Cabacal           |       |          |          |       |
|-------------------|-------|----------|----------|-------|
| Guiratinga        | 13883 | 0,00125  | 0,237469 | Baixa |
| Alto taquari      | 6058  | 0,0025   | 0,207566 | Baixa |
| Araguaína         | 1117  | 0,01     | 0,072124 | Baixa |
| Ipiranga do norte | 4129  | 0,002    | 0,038134 | Baixa |
| Marcelândia       | 14084 | 0,001111 | 0,022289 | Baixa |
| São Félix do      | 10713 | 0.01     | 0,0171   | Baixa |
| Araguaia          | 10/13 | 0,01     | 0,0171   | Daixa |

A Tabela 57 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbitos por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado de Rondônia no ano de 2007, no qual todos os municípios apresentaram eficiência Baixa, com destaque para Ariquemes (0,000106). Consegue-se, inferir com a leitura da tabela, por sua vez, que os municípios apresentaram classificação Alta de eficiência por tamanho de população no combate ao crime de homicídio, sendo tais: Cacoal (1,00), Rolim de Moura (1,00), e Guajará-Mirim (0,84). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado de Rondônia, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa. Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2007.

Tabela 57: Eficiência do Estado de RONDÔNIA e DMU, ano 2007.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|--------------------|-----------|----------------------------------------------|---------------------------------------------------------------|---------------|
|                                                  | Cacoal             | 76155     | 0,000227                                     | 1                                                             | Alta          |
|                                                  | Rolim de<br>Moura  | 48894     | 0,000909                                     | 1                                                             | Alta          |
| RO                                               | Guajará-<br>mirim  | 39451     | 0,000556                                     | 0,845892                                                      | Alta          |
|                                                  | Ariquemes          | 82388     | 0,000106                                     | 0,702324                                                      | Média         |
|                                                  | Jaru               | 52453     | 0,000769                                     | 0,646741                                                      | Média         |
|                                                  | Espigão<br>d'oeste | 27867     | 0,000667                                     | 0,27214                                                       | Baixa         |

Fonte: Elaboração própria.

A Tabela 58 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado de Roraima no ano de 2007. Consegue-se, inferir com

a leitura da tabela, por sua vez, que os municípios que apresentaram classificação Alta de eficiência por tamanho de população no combate ao crime de homicídio, foram: Caracaraí (0,88) e Boa Vista (0,83). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado de Roraima, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa. Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2007.

Tabela 58: Eficiência do Estado de RORAIMA e DMU, ano 2007.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU       | População | Eficiência<br>Total Geral<br>(eftg) | Eficiência<br>por Tamanho<br>da População<br>(eftfp) | Classificação |
|--------------------------------------------------|-----------|-----------|-------------------------------------|------------------------------------------------------|---------------|
| RR                                               | Caracaraí | 17981     | 0,000526                            | 0,888907                                             | Alta          |
|                                                  | Boa vista | 249853    | 4,37E-05                            | 0,834948                                             | Alta          |

Fonte: Elaboração própria.

## 5.7. Eficiência, ano base 2008.

A Tabela 59 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Acre no ano de 2008. Consegue-se, inferir com a leitura da tabela, por sua vez, que o município que apresentou classificação Alta de eficiência por tamanho de população no combate ao crime de homicídio, foi: Rio Branco (0,79). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Acre, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa (4,48E-05). Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2008.

Tabela 59: Eficiência do Estado do ACRE e DMU, ano 2008.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU              | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|------------------|-----------|----------------------------------------------|---------------------------------------------------------------|---------------|
|                                                  | Rio Branco       | 301398    | 4,48E-05                                     | 0,797387                                                      | Alta          |
| AC                                               | Manoel<br>Urbano | 7405      | 0,001667                                     | 0,103369                                                      | Baixa         |

Fonte: Elaboração própria.

A Tabela 60 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Amazonas no ano de 2008. Consegue-se inferir com a leitura da tabela, que os municípios que apresentaram classificação Alta de eficiência no combate ao crime de homicídio, foram: Coari (1,00), Eirunepé (1,00), Manacapuru (1,00), Manaus (1,00), Rio Preto da Eva (1,00), Urucurituba (1,00), Tabatinga (0,94), Parintins (0,87) e Barcelos (0,75). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Amazonas, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa, principal exemplo Manaus (7,85E-06). Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2008.

Tabela 60: Eficiência do Estado do AMAZONAS e DMU, ano 2008.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                 | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|---------------------|-----------|----------------------------------------------|---------------------------------------------------------------|---------------|
|                                                  | Coari               | 67055     | 0,000313                                     | 1                                                             | Alta          |
|                                                  | Eirunepé            | 30473     | 0,000526                                     | 1                                                             | Alta          |
|                                                  | Manacapuru          | 85279     | 0,000111                                     | 1                                                             | Alta          |
|                                                  | Manaus              | 1709010   | 7,85E-06                                     | 1                                                             | Alta          |
| AM                                               | Rio preto da<br>Eva | 26004     | 0,0004                                       | 1                                                             | Alta          |
|                                                  | Urucurituba         | 17971     | 0,01                                         | 1                                                             | Alta          |
|                                                  | Tabatinga           | 47051     | 0,000286                                     | 0,948873                                                      | Alta          |
|                                                  | Parintins           | 105742    | 0,000222                                     | 0,872678                                                      | Alta          |
|                                                  | Barcelos            | 25318     | 0,001667                                     | 0,757464                                                      | Alta          |

Fonte: Elaboração própria.

A Tabela 61 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Amapá no ano de 2008. Consegue-se, inferir com a leitura da tabela, por sua vez, que os municípios que apresentaram classificação Alta de eficiência por tamanho de população, no combate ao crime de homicídio, foram: Macapá (1,00) e Laranjal do Jari (0,93). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Amapá, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa, principal exemplo é Macapá (3,48E-05). Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2008.

Tabela 61: Eficiência do Estado do AMAPÁ e DMU, ano 2008.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                 | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|---------------------|-----------|----------------------------------------------|---------------------------------------------------------------|---------------|
|                                                  | Macapá              | 359020    | 3,48E-05                                     | 1                                                             | Alta          |
| AP                                               | Laranjal do<br>Jari | 39285     | 0,00037                                      | 0,936137                                                      | Alta          |
| 111                                              | Santana             | 95733     | 0,000244                                     | 0,577813                                                      | Média         |
|                                                  | Serra do<br>Navio   | 3921      | 0,01                                         | 0,121397                                                      | Baixa         |

Fonte: Elaboração própria.

A Tabela 62 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Mato Grosso no ano de 2008, sendo que o único município que apresentou eficiência Alta foi: Serra Nova Dourada (1,00). Consegue-se, inferir com a leitura da tabela, por sua vez, que os municípios que apresentaram classificação Alta de eficiência, por tamanho de população, no combate ao crime de homicídio, foram: Alto Araguaia (1,00), Barra do Bugres (1,00), Campo Verde (1,00), Guarantã do Norte (1,00), Jaciara (1,00), Juína (1,00), Matupá (1,00), Serra Nova Dourada (1,00), Sinop (1,00), Tangara da Serra (1,00), Vila rica (1,00), Sapezal (0,95), Cuiabá (0,93), Várzea Grande (0,92), Barra do Garças (0,85), Sorriso (0,83) e Tapurah (0,81). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Mato Grosso, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa. Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2008.

Tabela 62: Eficiência do Estado do MATO GROSSO e DMU, ano 2008.

| Unidade     |                   |            |             | Eficiência |               |
|-------------|-------------------|------------|-------------|------------|---------------|
| Federada da |                   | População  | Eficiência  | por        |               |
| Amazônia    | DMU               | i opulação | Total Geral | Tamanho da | Classificação |
| Legal (UF)  |                   |            | (eftg)      | População  |               |
| Legal (O1)  |                   |            |             | (eftfp)    |               |
|             | Alto Araguaia     | 14324      | 0,000526    | 1          | Alta          |
|             | Barra do Bugres   | 33724      | 0,0004      | 1          | Alta          |
|             | Campo verde       | 27151      | 0,000313    | 1          | Alta          |
| MT          | Guarantã do norte | 31801      | 0,000556    | 1          | Alta          |
|             | Jaciara           | 25745      | 0,000294    | 1          | Alta          |
|             | Juína             | 39582      | 0,000222    | 1          | Alta          |
|             | Matupá            | 14821      | 0,000833    | 1          | Alta          |
|             | Serra Nova        | 1407       | 1           | 1          | Alta          |

| Dourada                    |        |          |          |         |
|----------------------------|--------|----------|----------|---------|
| Sinop                      | 110513 | 0,000127 | 1        | Alta    |
| Tangara da serra           | 79870  | 0,000149 | 1        | Alta    |
| Vila rica                  | 19672  | 0,000476 | 1        | Alta    |
| Sapezal                    | 15014  | 0,00037  | 0,951031 | Alta    |
| Cuiabá                     | 544737 | 1,58E-05 | 0,936795 | Alta    |
| Várzea grande              | 237925 | 4,15E-05 | 0,920362 | Alta    |
| Barra do Garças            | 54882  | 0,000256 | 0,85271  | Alta    |
| Sorriso                    | 57799  | 0,000122 | 0,83862  | Alta    |
| Tapurah                    | 11020  | 0,001111 | 0,810113 | Alta    |
| Colíder                    | 31744  | 0,000667 | 0,701893 | Média   |
| Marcelândia                | 14482  | 0,00125  | 0,639277 | Média   |
| Castanheira                | 8040   | 0,001429 | 0,502052 | Média   |
| Pedra preta                | 16208  | 0,000625 | 0,501493 | Média   |
| Campo novo do Parecis      | 23230  | 0,000556 | 0,433972 | Regular |
| Santa Rita do<br>trivelato | 2615   | 0,01     | 0,329501 | Regular |
| Terra nova do norte        | 15063  | 0,002    | 0,324985 | Regular |
| Ipiranga do norte          | 4376   | 0,01     | 0,310727 | Regular |
| Guiratinga                 | 14360  | 0,001429 | 0,250999 | Regular |
| Alto taquari               | 6321   | 0,0025   | 0,184542 | Baixa   |
| Nova Mutum                 | 25658  | 0,000294 | 0,090996 | Baixa   |
| Araguaína                  | 1138   | 0,01     | 0,005815 | Baixa   |

A Tabela 63 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado de Rondônia no ano de 2008, no qual todos os municípios apresentaram eficiência Baixa, com destaque para Ariquemes (0,00008). Consegue-se, inferir com a leitura da tabela, por sua vez, que os municípios apresentaram classificação Alta de eficiência por tamanho de população no combate ao crime de homicídio, sendo tais: Cacoal (1,00), Jaru (1,00), Rolim de Moura (1,00), Guajará-mirim (0,90) e Ariquemes (0,83). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado de Rondônia, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa. Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2008.

Tabela 63: Eficiência do Estado de RONDÔNIA e DMU, ano 2008.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|--------------------|-----------|----------------------------------------------|---------------------------------------------------------------|---------------|
|                                                  | Cacoal             | 78263     | 0,000189                                     | 1                                                             | Alta          |
|                                                  | Jaru               | 53955     | 0,000263                                     | 1                                                             | Alta          |
| 7.0                                              | Rolim de<br>moura  | 50249     | 0,0025                                       | 1                                                             | Alta          |
| RO                                               | Guajará-<br>mirim  | 40541     | 0,000667                                     | 0,90718                                                       | Alta          |
|                                                  | Ariquemes          | 84581     | 0,00008                                      | 0,833251                                                      | Alta          |
|                                                  | Espigão<br>d'oeste | 28617     | 0,003333                                     | 0,656589                                                      | Média         |

A Tabela 64 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado de Roraima no ano de 2008. Consegue-se, inferir com a leitura da tabela, por sua vez, que o município que apresentou classificação Regular de eficiência por tamanho de população no combate ao crime de homicídio, foi: Boa Vista (0,48). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado de Roraima, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa. Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2008.

Tabela 64: Eficiência do Estado de RORAIMA e DMU, ano 2008.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU       | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|-----------|-----------|----------------------------------------------|---------------------------------------------------------------|---------------|
| RR                                               | Boa vista | 260930    | 4,72E-05                                     | 0,486897                                                      | Regular       |

Fonte: Elaboração própria.

#### 5.8. Eficiência, ano base 2009.

A Tabela 65 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Acre no ano de 2009. Consegue-se, inferir com a leitura da tabela, por sua vez, que os municípios que apresentaram classificação Baixa de eficiência por tamanho de população no combate ao crime de homicídio, foram: Rio Branco

(0,40) e Manoel Urbano (0,10). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Acre, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa (3,91E-05). Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2009.

Tabela 65: Eficiência do Estado do ACRE e DMU, ano 2009.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU              | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|------------------|-----------|----------------------------------------------|---------------------------------------------------------------|---------------|
|                                                  | Rio Branco       | 305954    | 3,91E-05                                     | 0,404635                                                      | Baixa         |
| AC                                               | Manoel<br>Urbano | 7505      | 0,001667                                     | 0,109437                                                      | Baixa         |

Fonte: Elaboração própria.

A Tabela 66 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Amazonas no ano de 2009. Consegue-se inferir com a leitura da tabela, que os municípios que apresentaram classificação Alta de eficiência por tamanho de população no combate ao crime de homicídio, foram: Barcelos (1,00), Coari (1,00), Eirunepé (1,00), Manaus (1,00), Urucurituba (1,00), Tabatinga (0,87), Rio preto da Eva (0,87) e Itacoatiara. Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Amazonas, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa, principal exemplo Manaus (7,61E-06). Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2009.

Tabela 66: Eficiência do Estado do AMAZONAS e DMU, ano 2009.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                 | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|---------------------|-----------|----------------------------------------------|---------------------------------------------------------------|---------------|
|                                                  | Barcelos            | 25410     | 0,00125                                      | 1                                                             | Alta          |
|                                                  | Coari               | 66991     | 0,000323                                     | 1                                                             | Alta          |
|                                                  | Eirunepé            | 30901     | 0,000556                                     | 1                                                             | Alta          |
|                                                  | Manaus              | 1738641   | 7,61E-06                                     | 1                                                             | Alta          |
| AM                                               | Urucurituba         | 18541     | 0,003333                                     | 1                                                             | Alta          |
|                                                  | Tabatinga           | 47948     | 0,000161                                     | 0,878999                                                      | Alta          |
|                                                  | Rio preto da<br>Eva | 26847     | 0,000769                                     | 0,877523                                                      | Alta          |
|                                                  | Itacoatiara         | 89440     | 0,000213                                     | 0,777445                                                      | Alta          |

| Manacapuru | 86472  | 0,000141 | 0,76125  | Alta    |
|------------|--------|----------|----------|---------|
| Canutama   | 11948  | 0,003333 | 0,574611 | Média   |
| Parintins  | 107250 | 0,000244 | 0,494544 | Regular |

A Tabela 67 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Amapá no ano de 2009. Consegue-se, inferir com a leitura da tabela, por sua vez, que os municípios que apresentaram classificação Alta de eficiência por tamanho de população, no combate ao crime de homicídio, foram: Macapá (1,00), Laranjal do Jari (0,78) e Santana (0,77). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Amapá, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa, principal exemplo é Macapá (3,76E-05). Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2009.

Tabela 67: Eficiência do Estado do AMAPÁ e DMU, ano 2009.

| Unidade<br>Federada da<br>Amazônia | DMU               | População      | Eficiência Total Geral (eftg) | Eficiência<br>por Tamanho<br>da População | Classificação |
|------------------------------------|-------------------|----------------|-------------------------------|-------------------------------------------|---------------|
| Legal (UF)                         | Macapá            | 366484         | 3,76E-05                      | ( <i>eftfp</i> )                          | Alta          |
| AP                                 | Laranjal do       |                | ,                             | 0.50.5550                                 | Alta          |
|                                    | Jari<br>Santana   | 40357<br>97220 | 0,0004<br>0,000208            | 0,786758<br>0,77405                       | Alta          |
|                                    | Serra do<br>Navio | 3982           | 0.01                          | 0.051241                                  | Baixa         |

Fonte: Elaboração própria.

A Tabela 68 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Mato Grosso no ano de 2009, sendo que os únicos municípios que apresentaram eficiência Alta foram: Serra Nova Dourada (1,00) e Terra nova do Norte (1,00). Consegue-se, inferir com a leitura da tabela, por sua vez, que os municípios que apresentaram classificação Alta de eficiência, por tamanho de população, no combate ao crime de homicídio, foram: Barra do Bugres (1,00), Campo Novo do Parecis (1,00), Campo Verde (1,00), Juína (1,00), Marcelândia (1,00), Matupá (1,00), Nova Mutum (1,00), Pedra Preta (1,00), Sapezal (1,00), Serra Nova Dourada (1,00), Sorriso (1,00), Tangara da serra (1,00), Terra Nova do Norte (1,00), Vila Rica (1,00), Alta Floresta (0,92), Alto Araguaia

(0,92), Cuiabá (0,87), Guarantã do Norte (0,84), Colíder (0,78), Jaciara (0,77). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Mato Grosso, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa. Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2009.

Tabela 68: Eficiência do Estado do MATO GROSSO e DMU, ano 2009.

| Unidade<br>Federada da<br>Amazônia | DMU                        | População | Eficiência<br>Total Geral | Eficiência<br>por<br>Tamanho da | Classificação |
|------------------------------------|----------------------------|-----------|---------------------------|---------------------------------|---------------|
| Legal (UF)                         |                            |           | (eftg)                    | População<br>( <i>eftfp</i> )   |               |
| -                                  | Barra do Bugres            | 34349     | 0,000345                  | 1                               | Alta          |
|                                    | Campo Novo do<br>Parecis   | 23784     | 0,000345                  | 1                               | Alta          |
|                                    | Campo verde                | 28147     | 0,000233                  | 1                               | Alta          |
|                                    | Juína                      | 39708     | 0,000196                  | 1                               | Alta          |
|                                    | Marcelândia                | 14473     | 0,000909                  | 1                               | Alta          |
|                                    | Matupá                     | 15170     | 0,001429                  | 1                               | Alta          |
|                                    | Nova Mutum                 | 26874     | 0,0004                    | 1                               | Alta          |
|                                    | Pedra preta                | 16461     | 0,000556                  | 1                               | Alta          |
|                                    | Sapezal                    | 15735     | 0,000417                  | 1                               | Alta          |
|                                    | Serra nova<br>dourada      | 1447      | 1                         | 1                               | Alta          |
|                                    | Sorriso                    | 60028     | 0,000112                  | 1                               | Alta          |
|                                    | Tangara da serra           | 81960     | 0,000122                  | 1                               | Alta          |
|                                    | Terra nova do norte        | 15190     | 1                         | 1                               | Alta          |
| MT                                 | Vila rica                  | 20075     | 0,001111                  | 1                               | Alta          |
| 1711                               | Alta floresta              | 51414     | 0,000222                  | 0,925778                        | Alta          |
|                                    | Alto Araguaia              | 14611     | 0,000667                  | 0,923594                        | Alta          |
|                                    | Cuiabá                     | 550562    | 1,61E-05                  | 0,877374                        | Alta          |
|                                    | Guarantã do norte          | 32142     | 0,000588                  | 0,840916                        | Alta          |
|                                    | Colíder                    | 32096     | 0,000556                  | 0,789653                        | Alta          |
|                                    | Jaciara                    | 25922     | 0,000385                  | 0,778992                        | Alta          |
|                                    | Barra do Garças            | 55120     | 0,000175                  | 0,64897                         | Média         |
|                                    | Várzea grande              | 240038    | 3,89E-05                  | 0,632256                        | Média         |
|                                    | Alto taquari               | 6505      | 0,001667                  | 0,576825                        | Média         |
|                                    | Guiratinga                 | 14523     | 0,000769                  | 0,532724                        | Média         |
|                                    | Sinop                      | 114051    | 0,000105                  | 0,368099                        | Regular       |
|                                    | Ipiranga do norte          | 4641      | 0,001429                  | 0,206065                        | Baixa         |
|                                    | Santa Rita do<br>trivelato | 2751      | 0,005                     | 0,176414                        | Baixa         |
|                                    | Tapurah                    | 11517     | 0,000714                  | 0,172156                        | Baixa         |
|                                    | Castanheira                | 8059      | 0,001111                  | 0,164624                        | Baixa         |
|                                    | Cotriguaçu                 | 14965     | 0,001                     | 0,119976                        | Baixa         |

| Araguaína | 1115 | 0.005 | 0,016541 | Baixa |
|-----------|------|-------|----------|-------|
|-----------|------|-------|----------|-------|

A Tabela 69 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado de Rondônia no ano de 2009, no qual todos os municípios apresentaram eficiência Baixa, com destaque para: Ji-paraná (8,7E-05) e Ariquemes (7,19E-05). Consegue-se, inferir com a leitura da tabela, por sua vez, que os municípios que apresentaram classificação Alta de eficiência, por tamanho de população no combate ao crime de homicídio, foram: Cacoal (1,00), Jaru (1,00), Guajará-mirim (0,90) e Ariquemes (0,82). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado de Rondônia, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa. Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2009.

Tabela 69: Eficiência do Estado de RONDÔNIA e DMU, ano 2009.

| Unidade<br>Federada da<br>Amazônia | DMU               | População | Eficiência<br>Total Geral | Eficiência<br>por Tamanho<br>da População | Classificação |
|------------------------------------|-------------------|-----------|---------------------------|-------------------------------------------|---------------|
| Legal (UF)                         |                   |           | (eftg)                    | (eftfp)                                   |               |
|                                    | Cacoal            | 78675     | 0,000172                  | 1                                         | Alta          |
|                                    | Jaru              | 53943     | 0,000313                  | 1                                         | Alta          |
| RO                                 | Guajará-<br>mirim | 40762     | 0,001111                  | 0,907788                                  | Alta          |
|                                    | Ariquemes         | 85541     | 7,19E-05                  | 0,821379                                  | Alta          |
|                                    | Ji-paraná         | 111010    | 8,7E-05                   | 0,62594                                   | Média         |

Fonte: Elaboração própria.

A Tabela 70 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado de Roraima no ano de 2009. Consegue-se, inferir com a leitura da tabela, por sua vez, que o município que apresentou classificação Regular de eficiência por tamanho de população no combate ao crime de homicídio, foi: Boa Vista (0,36). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado de Roraima, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa. Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2009.

Tabela 70: Eficiência do Estado de RORAIMA e DMU, ano 2009.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU       | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|-----------|-----------|----------------------------------------------|---------------------------------------------------------------|---------------|
| RR                                               | Boa vista | 266901    | 4,61E-05                                     | 0,362854                                                      | Regular       |

Fonte: Elaboração própria.

## 5.9. Eficiência, ano base 2010.

A Tabela 71 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Acre no ano de 2010. Consegue-se, inferir com a leitura da tabela, por sua vez, que os municípios que apresentaram, respectivamente, classificação Regular e Baixa de eficiência por tamanho de população no combate ao crime de homicídio, foram: Rio Branco (0,38) e Manoel Urbano (0,19). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Acre, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa (3,69E-05). Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2010.

Tabela 71: Eficiência do Estado do ACRE e DMU, ano 2010.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU              | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|------------------|-----------|----------------------------------------------|---------------------------------------------------------------|---------------|
|                                                  | Rio Branco       | 336038    | 3,69E-05                                     | 0,381554                                                      | Regular       |
| AC                                               | Manoel<br>Urbano | 7981      | 0,002                                        | 0,198863                                                      | Baixa         |

Fonte: Elaboração própria.

A Tabela 72 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Amazonas no ano de 2010. Consegue-se inferir com a leitura da tabela, que os municípios que apresentaram classificação Alta de eficiência por tamanho de população no combate ao crime de homicídio, foram: Barcelos (1,00), Coari (1,00), Eirunepé (1,00), Itacoatiara (1,00), Itamarati (1,00), Manaus (1,00), Tabatinga (1,00).

Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Amazonas, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa, principal exemplo Manaus (6,47E-06). Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2010.

Tabela 72: Eficiência do Estado do AMAZONAS e DMU, ano 2010.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                 | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|---------------------|-----------|----------------------------------------------|---------------------------------------------------------------|---------------|
|                                                  | Barcelos            | 25718     | 0,001667                                     | 1                                                             | Alta          |
|                                                  | Coari               | 75965     | 0,000357                                     | 1                                                             |               |
|                                                  | Eirunepé            | 30665     | 0,000556                                     | 1                                                             | Alta          |
|                                                  | Itacoatiara         | 86839     | 0,000455                                     | 1                                                             | Alta          |
|                                                  | Itamarati           | 8038      | 0,003333                                     | 1                                                             | Alta          |
|                                                  | Manaus              | 1802014   | 6,47E-06                                     | 1                                                             | Alta          |
| AM                                               | Tabatinga           | 52272     | 0,000263                                     | 1                                                             | Alta          |
|                                                  | Urucurituba         | 17837     | 0,01                                         | 0,600596                                                      | Média         |
|                                                  | Canutama            | 12738     | 0,003333                                     | 0,546587                                                      | Média         |
|                                                  | Manacapuru          | 85141     | 0,000182                                     | 0,51888                                                       | Média         |
|                                                  | Rio preto da<br>Eva | 25719     | 0,00037                                      | 0,515189                                                      | Média         |
|                                                  | Parintins           | 102033    | 0,000357                                     | 0,435758                                                      | Regular       |

Fonte: Elaboração própria.

A Tabela 73 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Amapá no ano de 2010. Consegue-se, inferir com a leitura da tabela, por sua vez, que os municípios que apresentaram classificação Alta de eficiência por tamanho de população, no combate ao crime de homicídio, foram: Macapá (1,00) e Santana (1,00). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Amapá, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa, principal exemplo é Macapá (2,82E-05). Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2010.

Tabela 73: Eficiência do Estado do AMAPÁ e DMU, ano 2010.

| Tuocia 75. Ellen                                 | enera do Estac | 10 40 7 11 11 11 11 1 | DIVIC, and 2010                              |                                                      |               |
|--------------------------------------------------|----------------|-----------------------|----------------------------------------------|------------------------------------------------------|---------------|
| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU            | População             | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>(eftfp) | Classificação |
| $\mathcal{U}$                                    |                |                       |                                              | \ J JI /                                             |               |

|    | Macapá<br>Santana   | 398204<br>101262 | 2,82E-05<br>0,000204 | 1        | Alta<br>Alta |
|----|---------------------|------------------|----------------------|----------|--------------|
| AP | Laranjal do<br>Jari | 39942            | 0,000385             | 0,697304 | Média        |
|    | Serra do<br>Navio   | 4380             | 1                    | 0,391927 | Regular      |

A Tabela 74 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Mato Grosso no ano de 2010, sendo que os únicos municípios que apresentaram eficiência Alta foram: Araguainha (1,00), Matupá (1,00) e Santa Rita do Trivelato (1,00). Consegue-se, inferir com a leitura da tabela, por sua vez, que os municípios que apresentaram classificação Alta de eficiência, por tamanho de população, no combate ao crime de homicídio, foram: Alta floresta (1,00), Alto Araguaia (1,00), Araguainha (1,00), Campo Novo do Parecis (1,00), Ipiranga do norte (1,00), Jaciara (1,00), Juína (1,00), Lucas do Rio Verde (1,00), Marcelândia (1,00), Matupá (1,00), Santa Rita do Trivelato (1,00), Serra Nova Dourada (1,00), Sorriso (1,00), Várzea Grande (1,00), Nova Mutum (0,96), Tangara da Serra (0,95), Vila rica (0,91), Campo Verde (0,91), Barra do Bugres (0,91) e Castanheira (0,89). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Mato Grosso, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa. Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2010.

Tabela 74: Eficiência do Estado do MATO GROSSO e DMU, ano 2010.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                   | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por<br>Tamanho da<br>População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|-----------------------|-----------|----------------------------------------------|------------------------------------------------------------------|---------------|
|                                                  | Alta floresta         | 49164     | 0,000278                                     | 1                                                                | Alta          |
|                                                  | Alto Araguaia         | 15644     | 0,000526                                     | 1                                                                | Alta          |
|                                                  | Araguainha            | 1096      | 1                                            | 1                                                                | Alta          |
|                                                  | Campo novo do Parecis | 27577     | 0,000303                                     | 1                                                                | Alta          |
| MT                                               | Ipiranga do norte     | 5123      | 0,005                                        | 1                                                                | Alta          |
|                                                  | Jaciara               | 25647     | 0,000455                                     | 1                                                                | Alta          |
|                                                  | Juína                 | 39255     | 0,00027                                      | 1                                                                | Alta          |
|                                                  | Lucas do Rio<br>Verde | 45556     | 0,000376                                     | 1                                                                | Alta          |
|                                                  | Marcelândia           | 12006     | 0,001277                                     | 1                                                                | Alta          |

| Matupá           | 14174  | 1                     | 1        | Alta    |
|------------------|--------|-----------------------|----------|---------|
| Santa Rita do    | 2491   | 1                     | 1        | Alta    |
| Trivelato        | 2471   | 1                     | 1        | Tita    |
| Serra Nova       | 1365   | 0,029467              | 1        | Alta    |
| Dourada          | 1303   | 0,029407              | 1        | Alla    |
| Sorriso          | 66521  | 0,000137              | 1        | Alta    |
| Várzea Grande    | 252596 | 4,2E-05               | 1        | Alta    |
| Nova Mutum       | 31649  | 0,000435              | 0,969845 | Alta    |
| Tangara da Serra | 83431  | 0,000102              | 0,959936 | Alta    |
| Vila rica        | 21382  | 0,0005                | 0,914893 | Alta    |
| Campo Verde      | 31589  | 0,000204              | 0,911416 | Alta    |
| Barra do Bugres  | 31793  | 0,000333              | 0,910034 | Alta    |
| Castanheira      | 8231   | 0,002                 | 0,890388 | Alta    |
| Cuiabá           | 551098 | 1,62E-05              | 0,668093 | Média   |
| Sapezal          | 18094  | 0,000769              | 0,654428 | Média   |
| Barra do Garças  | 56560  | 0,000164              | 0,645987 | Média   |
| Colíder          | 30766  | 0,000667              | 0,621441 | Média   |
| Cáceres          | 87942  | 0,0001                | 0,55353  | Média   |
| Pedra preta      | 15755  | 0,003816              | 0,415499 | Regular |
| Alto taquari     | 8072   | 0,00125               | 0,331317 | Regular |
| Tapurah          | 10392  | 0,001                 | 0,295527 | Regular |
| Sinop            | 113099 | 9,43E-05              | 0,295461 | Regular |
| Terra nova do    | 11291  | 0,004496              | 0.104767 | Baixa   |
| norte            | 11291  | 0,00 <del>44</del> 90 | 0,194767 | Daixa   |
| Guiratinga       | 13934  | 0,001111              | 0,024389 | Baixa   |

A Tabela 75 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado de Rondônia no ano de 2010, no qual todos os municípios apresentaram eficiência Baixa, com destaque para: Ariquemes (9,71E-05) e Guajará-mirim (0,0004). Consegue-se, inferir com a leitura da tabela, por sua vez, que os municípios que apresentaram classificação Alta de eficiência, por tamanho de população no combate ao crime de homicídio, foram: Guajará-mirim (1,00), Cacoal (0,87) e Ariquemes (0,86). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado de Rondônia, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa. Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2010.

Tabela 75: Eficiência do Estado de RONDÔNIA e DMU, ano 2010.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU               | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|-------------------|-----------|----------------------------------------------|---------------------------------------------------------------|---------------|
|                                                  | Guajará-<br>mirim | 41656     | 0,0004                                       | 1                                                             | Alta          |
| RO                                               | Cacoal            | 78574     | 0,000159                                     | 0,871487                                                      | Alta          |
| 110                                              | Ariquemes         | 90353     | 9,71E-05                                     | 0,869159                                                      | Alta          |
|                                                  | Ji-paraná         | 116610    | 0,000123                                     | 0,677263                                                      | Média         |
|                                                  | Jaru              | 52005     | 0,000294                                     | 0,365376                                                      | Regular       |

A Tabela 76 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado de Roraima no ano de 2010. Consegue-se, inferir com a leitura da tabela, por sua vez, que o município que apresentou classificação Regular de eficiência por tamanho de população no combate ao crime de homicídio, foi: Boa Vista (0,40). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado de Roraima, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa. Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2010.

Tabela 76: Eficiência do Estado de RORAIMA e DMU, ano 2010.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU       | População | Eficiência<br>Total Geral<br>(eftg) | Eficiência<br>por Tamanho<br>da População<br>(eftfp) | Classificação |
|--------------------------------------------------|-----------|-----------|-------------------------------------|------------------------------------------------------|---------------|
| RR                                               | Boa vista | 284313    | 4,22E-05                            | 0,403645                                             | Regular       |

Fonte: Elaboração própria.

## 5.10. Eficiência, ano base 2011.

A Tabela 77 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Acre no ano de 2011. Consegue-se, inferir com a leitura da tabela, por sua vez, que os municípios que apresentaram, respectivamente, classificação Alta e Regular de eficiência por tamanho de população no combate ao crime de homicídio, foram: Manoel Urbano (1,00) e Rio Branco (0,38). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado

do Acre, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa (3,72E-05). Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2011.

Tabela 77: Eficiência do Estado do ACRE e DMU, ano 2011.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU              | População | Eficiência<br>Total Geral<br>(eftg) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|------------------|-----------|-------------------------------------|---------------------------------------------------------------|---------------|
| AC                                               | Manoel<br>Urbano | 8104      | 0,0025                              | 1                                                             | Alta          |
|                                                  | Rio Branco       | 342298    | 3,72E-05                            | 0,383509                                                      | Regular       |

Fonte: Elaboração própria.

A Tabela 78 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Amazonas no ano de 2011. Consegue-se inferir com a leitura da tabela, que os municípios que apresentaram classificação Alta de eficiência por tamanho de população no combate ao crime de homicídio, foram: Barcelos (1,00), Canutama (1,00), Coari (1,00), Eirunepé (1,00), Itacoatiara (1,00), Itamarati (1,00), Manaus (1,00), Uarini (1,00), Urucurituba (1,00), Beruri (0,94) e Rio Preto da Eva (0,89). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Amazonas, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa, principal exemplo Manaus (5,78E-06). Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2011.

Tabela 78: Eficiência do Estado do AMAZONAS e DMU, ano 2011.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU         | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|-------------|-----------|----------------------------------------------|---------------------------------------------------------------|---------------|
|                                                  | Barcelos    | 25835     | 0,000769                                     | 1                                                             | Alta          |
|                                                  | Canutama    | 12892     | 0,0025                                       | 1                                                             |               |
|                                                  | Coari       | 76646     | 0,000303                                     | 1                                                             | Alta          |
|                                                  | Eirunepé    | 31020     | 0,000526                                     | 1                                                             | Alta          |
| AM                                               | Itacoatiara | 87970     | 0,000238                                     | 1                                                             | Alta          |
| 2 22.12                                          | Itamarati   | 8010      | 0,002                                        | 1                                                             | Alta          |
|                                                  | Manaus      | 1832423   | 5,78E-06                                     | 1                                                             | Alta          |
|                                                  | Uarini      | 12017     | 0,001667                                     | 1                                                             | Alta          |
|                                                  | Urucurituba | 18265     | 0,003333                                     | 1                                                             | Alta          |
|                                                  | Beruri      | 15827     | 0,0025                                       | 0,943223                                                      | Alta          |

| Rio Preto da<br>Eva | 26344  | 0,000435 | 0,894547 | Alta  |
|---------------------|--------|----------|----------|-------|
| Parintins           | 102945 | 0,000227 | 0,648598 | Média |
| Tabatinga           | 53374  | 0,000256 | 0,557857 | Média |

A Tabela 79 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Amapá no ano de 2011. Consegue-se, inferir com a leitura da tabela, por sua vez, que os municípios que apresentaram classificação Alta de eficiência por tamanho de população, no combate ao crime de homicídio, foram: Serra do Navio (1,00), Macapá (1,00) e Santana (1,00). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Amapá, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa, principal exemplo é Macapá (3,1E-05). Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2011.

Tabela 79: Eficiência do Estado do AMAPÁ e DMU, ano 2011.

| Tabela 17. Lii                                   | ciciicia do Estad   | io do mvim m c | DIVIO, and 2011                              | L•                                                            |               |
|--------------------------------------------------|---------------------|----------------|----------------------------------------------|---------------------------------------------------------------|---------------|
| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                 | População      | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|                                                  | Serra do<br>Navio   | 4463           | 1                                            | 1                                                             | Alta          |
| AP                                               | Macapá              | 407023         | 3,1E-05                                      | 1                                                             | Alta          |
| 711                                              | Santana             | 102860         | 0,000208                                     | 1                                                             | Alta          |
|                                                  | Laranjal do<br>Jari | 40819          | 0,000323                                     | 0,671217                                                      | Média         |

Fonte: Elaboração própria.

A Tabela 80 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Mato Grosso no ano de 2011, sendo que os únicos municípios que apresentaram eficiência Alta foram: Araguainha (1,00), Santa Rita do Trivelato (1,00) e Serra Nova Dourada (1,00). Consegue-se, inferir com a leitura da tabela, por sua vez, que os municípios que apresentaram classificação Alta de eficiência, por tamanho de população, no combate ao crime de homicídio, foram: Alta floresta (1,00), Araguainha (1,00), Ipiranga do Norte (1,00), Jaciara (1,00), Ipiranga do norte (1,00), Jaciara (1,00), Lucas do Rio Verde (1,00), Marcelândia (1,00), Matupá (1,00), Rondonópolis (1,00), Santa Rita do

Trivelato (1,00), Serra Nova Dourada (1,00), Sorriso (1,00), Tangara da Serra (1,00), Vila Rica (1,00), Juína (0,96), Barra do Garças (0,91), Nova Mutum (0,90), Campo Verde (0,89), Sapezal (0,83), Campo Novo do Parecis (0,79), Várzea Grande Cáceres (0,77) E Barra do Bugres (0,76). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Mato Grosso, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa. Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2011.

Tabela 80: Eficiência do Estado do MATO GROSSO e DMU, ano 2011

| Tabela 80: Eficiência do Estado do MATO GROSSO e DMU, ano 2011. |                            |           |                                              |                                                                  |               |
|-----------------------------------------------------------------|----------------------------|-----------|----------------------------------------------|------------------------------------------------------------------|---------------|
| Unidade<br>Federada da<br>Amazônia<br>Legal (UF)                | DMU                        | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por<br>Tamanho da<br>População<br>( <i>eftfp</i> ) | Classificação |
|                                                                 | Alta floresta              | 49331     | 0,000233                                     | 1                                                                | Alta          |
|                                                                 | Araguainha                 | 1076      | 1                                            | 1                                                                | Alta          |
|                                                                 | Ipiranga do Norte          | 5381      | 0,0025                                       | 1                                                                | Alta          |
|                                                                 | Jaciara                    | 25789     | 0,0004                                       | 1                                                                | Alta          |
|                                                                 | Lucas do Rio<br>Verde      | 47570     | 0,000278                                     | 1                                                                | Alta          |
|                                                                 | Marcelândia                | 11819     | 0,010784                                     | 1                                                                | Alta          |
|                                                                 | Matupá                     | 14395     | 0,000625                                     | 1                                                                | Alta          |
|                                                                 | Rondonópolis               | 198949    | 4,35E-05                                     | 1                                                                | Alta          |
|                                                                 | Santa Rita do<br>Trivelato | 2585      | 1                                            | 1                                                                | Alta          |
|                                                                 | Serra Nova<br>Dourada      | 1392      | 1                                            | 1                                                                | Alta          |
|                                                                 | Sorriso                    | 68894     | 0,000106                                     | 1                                                                | Alta          |
|                                                                 | Tangara da Serra           | 85319     | 0,000123                                     | 1                                                                | Alta          |
| MT                                                              | Vila Rica                  | 21827     | 0,000769                                     | 1                                                                | Alta          |
|                                                                 | Juína                      | 39350     | 0,000244                                     | 0,965959                                                         | Alta          |
|                                                                 | Barra do Garças            | 56903     | 0,000208                                     | 0,913677                                                         | Alta          |
|                                                                 | Nova Mutum                 | 33034     | 0,00027                                      | 0,906554                                                         | Alta          |
|                                                                 | Campo Verde                | 32692     | 0,000588                                     | 0,899503                                                         | Alta          |
|                                                                 | Sapezal                    | 18879     | 0,000357                                     | 0,833541                                                         | Alta          |
|                                                                 | Campo Novo do<br>Parecis   | 28340     | 0,000357                                     | 0,793304                                                         | Alta          |
|                                                                 | Várzea Grande              | 255448    | 4,5E-05                                      | 0,772238                                                         | Alta          |
|                                                                 | Cáceres                    | 88427     | 9,35E-05                                     | 0,764047                                                         | Alta          |
|                                                                 | Barra do Bugres            | 32134     | 0,000417                                     | 0,76109                                                          | Alta          |
|                                                                 | Cuiabá                     | 556298    | 1,5E-05                                      | 0,640643                                                         | Média         |
|                                                                 | Pedra preta                | 15920     | 0,000951                                     | 0,533533                                                         | Média         |
|                                                                 | Colíder                    | 30974     | 0,001                                        | 0,528475                                                         | Média         |
|                                                                 | Sinop                      | 116013    | 9,35E-05                                     | 0,515186                                                         | Média         |
|                                                                 | Tapurah                    | 10722     | 0,000667                                     | 0,512628                                                         | Média         |

| Castanheira         | 8265  | 0,0025   | 0,404858 | Regular |
|---------------------|-------|----------|----------|---------|
| Alto taquari        | 8348  | 0,001    | 0,190597 | Baixa   |
| Terra nova do norte | 11107 | 0,002057 | 0,139193 | Baixa   |

A Tabela 81 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado de Rondônia no ano de 2011, no qual todos os municípios apresentaram eficiência Baixa, com destaque para: Ariquemes (7,63E-05) e Guajará-mirim (0,000435). Consegue-se, inferir com a leitura da tabela, por sua vez, que os municípios que apresentaram classificação Alta de eficiência, por tamanho de população no combate ao crime de homicídio, foram: Ariquemes (1,00), Guajará-mirim (1,00) e Cacoal (0,85). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado de Rondônia, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa. Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2011.

Tabela 81: Eficiência do Estado de RONDÔNIA e DMU, ano 2011.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU               | População | Eficiência<br>Total Geral<br>(eftg) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|-------------------|-----------|-------------------------------------|---------------------------------------------------------------|---------------|
| RO                                               | Ariquemes         | 91570     | 7,63E-05                            | 1                                                             | Alta          |
|                                                  | Guajará-<br>mirim | 41933     | 0,000435                            | 1                                                             | Alta          |
|                                                  | Cacoal            | 78958     | 0,000185                            | 0,855402                                                      | Alta          |
|                                                  | Ji-paraná         | 117363    | 0,000122                            | 0,715587                                                      | Média         |
|                                                  | Jaru              | 51883     | 0,000238                            | 0,560984                                                      | Média         |

Fonte: Elaboração própria.

A Tabela 82 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado de Roraima no ano de 2011. Consegue-se, inferir com a leitura da tabela, por sua vez, que o município que apresentou classificação Regular de eficiência por tamanho de população no combate ao crime de homicídio, foi: Boa Vista (0,35). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado de Roraima, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa. Não foi

possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2011.

Tabela 82: Eficiência do Estado de RORAIMA e DMU, ano 2011.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU       | População | Eficiência<br>Total Geral<br>(eftg) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|-----------|-----------|-------------------------------------|---------------------------------------------------------------|---------------|
| RR                                               | Boa vista | 290741    | 4,42E-05                            | 0,356516                                                      | Regular       |

Fonte: Elaboração própria.

## 5.11. Eficiência, ano base 2012.

A Tabela 83 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Acre no ano de 2012. Consegue-se, inferir com a leitura da tabela, por sua vez, que os municípios que apresentaram, respectivamente, classificação Média e Regular de eficiência por tamanho de população no combate ao crime de homicídio, foram: Rio Branco (0,56) e Manoel Urbano (0,26). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Acre, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa (3,46E-05). Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2012.

Tabela 83: Eficiência do Estado do ACRE e DMU, ano 2012.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU              | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|------------------|-----------|----------------------------------------------|---------------------------------------------------------------|---------------|
| . ~                                              | Rio Branco       | 348354    | 3,46E-05                                     | 0,560993                                                      | Média         |
| AC                                               | Manoel<br>Urbano | 8224      | 0,00125                                      | 0,265169                                                      | Regular       |

Fonte: Elaboração própria.

A Tabela 84 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Amazonas no ano de 2012. Consegue-se inferir com a leitura da tabela, que os municípios que apresentaram classificação Alta de eficiência, por tamanho de população no combate ao crime de homicídio, foram: Barcelos (1,00), Coari (1,00), Eirunepé (1,00), Itacoatiara (1,00), Itamarati (1,00), Manaus (1,00), Rio Preto da Eva

(1,00), Uarini (1,00), Urucurituba (1,00), Canutama (0,80) e Anamã (0,77). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Amazonas, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa, principal exemplo Manaus (5,49E-06). Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2012.

Tabela 84: Eficiência do Estado do AMAZONAS e DMU, ano 2012.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                  | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|----------------------|-----------|----------------------------------------------|---------------------------------------------------------------|---------------|
|                                                  | Barcelos             | 25948     | 0,000667                                     | 1                                                             | Alta          |
|                                                  | Coari                | 77305     | 0,000238                                     | 1                                                             |               |
|                                                  | Eirunepé             | 31364     | 0,000556                                     | 1                                                             | Alta          |
|                                                  | Itacoatiara          | 89064     | 0,000233                                     | 1                                                             | Alta          |
|                                                  | Itamarati            | 7983      | 0,01                                         | 1                                                             | Alta          |
|                                                  | Manaus               | 1861838   | 5,49E-06                                     | 1                                                             | Alta          |
|                                                  | Rio Preto da<br>Eva  | 26948     | 0,000476                                     | 1                                                             | Alta          |
|                                                  | Uarini               | 12139     | 0,003333                                     | 1                                                             | Alta          |
| AM                                               | Urucurituba          | 18679     | 0,01                                         | 1                                                             | Alta          |
|                                                  | Canutama             | 13986     | 0,01                                         | 0,802496                                                      | Alta          |
|                                                  | Anamã                | 10766     | 0,003333                                     | 0,771703                                                      | Alta          |
|                                                  | Manaquiri            | 24325     | 0,001667                                     | 0,666425                                                      | Média         |
|                                                  | Tabatinga            | 54440     | 0,0002                                       | 0,608774                                                      | Média         |
|                                                  | Beruri               | 16158     | 0,0025                                       | 0,498214                                                      | Regular       |
|                                                  | <b>Parintins</b>     | 103828    | 0,000227                                     | 0,470391                                                      | Regular       |
|                                                  | Amaturá              | 9794      | 0,001429                                     | 0,453179                                                      | Regular       |
|                                                  | Careiro da<br>Várzea | 24937     | 0,01                                         | 0,243965                                                      | Baixa         |

Fonte: Elaboração própria.

A Tabela 85 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Amapá no ano de 2012. Consegue-se, inferir com a leitura da tabela, por sua vez, que o município que apresentou classificação Alta de eficiência por tamanho de população, no combate ao crime de homicídio, foi: Macapá (1,00). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Amapá, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa, principal exemplo é

Macapá (2,78E-05). Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2012.

Tabela 85: Eficiência do Estado do AMAPÁ e DMU, ano 2012.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU      | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|----------|-----------|----------------------------------------------|---------------------------------------------------------------|---------------|
|                                                  | Macapá   | 415554    | 2,78E-05                                     | 1                                                             | Alta          |
| AP                                               | Santana  | 104407    | 0,000179                                     | 0,485312                                                      | Regular       |
|                                                  | Serra do | 4545      | 1                                            | 0,02742                                                       | Baixa         |
|                                                  | navio    | 4343      | 1                                            | 0,02742                                                       | Dalxa         |

Fonte: Elaboração própria.

A Tabela 86 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Mato Grosso no ano de 2012, sendo que os únicos municípios que apresentaram eficiência Alta foram: Serra Nova Dourada (1,00), Colíder (1,00), Santa Rita do Trivelato (1,00) e Indiavaí (1,00). Consegue-se, inferir com a leitura da tabela, por sua vez, que os municípios que apresentaram classificação Alta de eficiência, por tamanho de população, no combate ao crime de homicídio, foram: Araguainha (1,00), Ipiranga do norte (1,00), Lucas do rio verde (1,00), Matupá (1,00), Mirassol d'oeste (1,00), Nova mutum (1,00), Serra Nova Dourada (1,00), Sinop (1,00), Tangara da Serra (1,00), Vila Rica (1,00), Pedra Preta (0,98), Rondonópolis (0,98), Juína (0,92), Campo Verde (0,89), Sorriso (0,85), Barra do Bugres (0,82), Barra do Garças (0,81), Campo Novo do Parecis (0,81) e Várzea Grande (0,81). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Mato Grosso, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa. Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2012.

Tabela 86: Eficiência do Estado do MATO GROSSO e DMU, ano 2012.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                   | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por<br>Tamanho da<br>População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|-----------------------|-----------|----------------------------------------------|------------------------------------------------------------------|---------------|
|                                                  | Araguainha            | 1058      | 0,01                                         | 1                                                                | Alta          |
| MT                                               | Ipiranga do norte     | 5631      | 0,003333                                     | 1                                                                | Alta          |
|                                                  | Lucas do rio<br>verde | 49519     | 0,000286                                     | 1                                                                | Alta          |

| Matupá                     | 14610  | 0,000833 | 1        | Alta    |
|----------------------------|--------|----------|----------|---------|
| Mirassol d'oeste           | 25684  | 0,001429 | 1        | Alta    |
| Nova mutum                 | 34374  | 0,00025  | 1        | Alta    |
| Serra Nova<br>Dourada      | 1419   | 1        | 1        | Alta    |
| Sinop                      | 118833 | 6,94E-05 | 1        | Alta    |
| Tangara da Serra           | 87145  | 0,00011  | 1        | Alta    |
| Vila Rica                  | 22258  | 0,000526 | 1        | Alta    |
| Pedra Preta                | 16079  | 0,000476 | 0,981807 | Alta    |
| Rondonópolis               | 202309 | 3,58E-05 | 0,981476 | Alta    |
| Juína                      | 39442  | 0,000204 | 0,928968 | Alta    |
| Campo Verde                | 33759  | 0,0005   | 0,89183  | Alta    |
| Sorriso                    | 71190  | 0,000224 | 0,858646 | Alta    |
| Barra do Bugres            | 32464  | 0,000476 | 0,826647 | Alta    |
| Barra do Garças            | 57235  | 0,000175 | 0,81763  | Alta    |
| Campo Novo do<br>Parecis   | 29078  | 0,000323 | 0,815526 | Alta    |
| Várzea grande              | 258208 | 3,68E-05 | 0,81014  | Alta    |
| Cáceres                    | 88897  | 9,17E-05 | 0,748495 | Média   |
| Juara                      | 33100  | 0,000455 | 0,705074 | Média   |
| Tapurah                    | 11042  | 0,001667 | 0,680361 | Média   |
| Cuiabá                     | 561329 | 1,61E-05 | 0,665359 | Média   |
| Sapezal                    | 19639  | 0,000556 | 0,653863 | Média   |
| Terra nova do norte        | 10929  | 0,003427 | 0,572801 | Média   |
| Colíder                    | 31176  | 1        | 0,516151 | Média   |
| Santa Rita do<br>Trivelato | 2676   | 1        | 0,39163  | Regular |
| Castanheira                | 8298   | 0,005    | 0,312224 | Regular |
| Alto taquari               | 8615   | 0,003333 | 0,229653 | Baixa   |
| Indiavaí                   | 2449   | 1        | 0,041464 | Baixa   |

A Tabela 87 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado de Rondônia no ano de 2012, no qual todos os municípios apresentaram eficiência Baixa, com destaque para: Ariquemes (6,94E-05). Consegue-se, inferir com a leitura da tabela, por sua vez, que os municípios que apresentaram classificação Alta de eficiência, por tamanho de população no combate ao crime de homicídio, foram: Cacoal (1,00) e Ariquemes (0,94). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado de Rondônia, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa. Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2012.

Tabela 87: Eficiência do Estado do RONDÔNIA e DMU, ano 2012.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                 | População      | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|---------------------|----------------|----------------------------------------------|---------------------------------------------------------------|---------------|
|                                                  | Cacoal<br>Ariquemes | 79330<br>92747 | 0,000116<br>6,94E-05                         | 1<br>0,943774                                                 | Alta<br>Alta  |
| RO                                               | Guajará-<br>mirim   | 42202          | 0,00037                                      | 0,634908                                                      | Média         |
|                                                  | Ji-paraná           | 118092         | 0,00012                                      | 0,594126                                                      | Média         |
|                                                  | Jaru                | 51765          | 0,000294                                     | 0,56539                                                       | Média         |

Fonte: Elaboração própria.

A Tabela 88 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado de Roraima no ano de 2012. Consegue-se, inferir com a leitura da tabela, por sua vez, que o município que apresentou classificação Média de eficiência por tamanho de população no combate ao crime de homicídio, foi: Boa Vista (0,58). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado de Roraima, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa. Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2012.

Tabela 88: Eficiência do Estado do RORAIMA e DMU, ano 2012.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU       | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|-----------|-----------|----------------------------------------------|---------------------------------------------------------------|---------------|
| RR                                               | Boa vista | 296959    | 4,22E-05                                     | 0,584176                                                      | Média         |

Fonte: Elaboração própria.

# 5.12. Eficiência, ano base 2013.

A Tabela 89 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Acre no ano de 2013. Consegue-se, inferir com a leitura da tabela, por sua vez, que o município que apresentou classificação Regular de eficiência por tamanho de população no combate ao crime de homicídio, foi: Rio Branco (0,44). Importante salientar a considerável heterogeneidade existente entre os diversos

municípios, que compõem o Estado do Acre, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa (3,33E-05). Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2013.

Tabela 89: Eficiência do Estado do ACRE e DMU, ano 2013.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU        | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|------------|-----------|----------------------------------------------|---------------------------------------------------------------|---------------|
| AC                                               | Rio Branco | 357194    | 3,33E-05                                     | 0,44521                                                       | Regular       |

Fonte: Elaboração própria.

A Tabela 90 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Amazonas no ano de 2013. Consegue-se inferir com a leitura da tabela, que os municípios que apresentaram classificação Alta de eficiência, por tamanho de população no combate ao crime de homicídio, foram: Anori (1,00), Atalaia do Norte (1,00), Barcelos (1,00), Canutama (1,00), Coari (1,00), Eirunepé (1,00), Itacoatiara (1,00), Itamarati (1,00), Manaquiri (1,00), Manaus (1,00), Urucurituba (1,00), Uarini (0,88) e Beruri (0,81). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Amazonas, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa, principal exemplo Manaus (6,01E-06). Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2013.

Tabela 90: Eficiência do Estado do AMAZONAS e DMU, ano 2013.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                 | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|---------------------|-----------|----------------------------------------------|---------------------------------------------------------------|---------------|
|                                                  | Anori               | 18351     | 0,002                                        | 1                                                             | Alta          |
|                                                  | Atalaia do<br>Norte | 17174     | 0,001                                        | 1                                                             |               |
|                                                  | Barcelos            | 27110     | 0,00037                                      | 1                                                             | Alta          |
| AM                                               | Canutama            | 14754     | 0,005                                        | 1                                                             | Alta          |
| 1 11/1                                           | Coari               | 81325     | 0,000213                                     | 1                                                             | Alta          |
|                                                  | Eirunepé            | 33127     | 0,000323                                     | 1                                                             | Alta          |
|                                                  | Itacoatiara         | 94278     | 0,000137                                     | 1                                                             | Alta          |
|                                                  | Itamarati           | 8232      | 0,01                                         | 1                                                             | Alta          |
|                                                  | Manaquiri           | 26530     | 0,001111                                     | 1                                                             | Alta          |

| Manaus                | 1982177 | 6,01E-06 | 1        | Alta    |
|-----------------------|---------|----------|----------|---------|
| Urucurituba           | 20091   | 0,001111 | 1        | Alta    |
| Uarini                | 12801   | 0,001111 | 0,885099 | Média   |
| Beruri                | 17332   | 0,003333 | 0,812584 | Média   |
| Tabatinga             | 58314   | 0,000169 | 0,736825 | Média   |
| Borba                 | 38073   | 0,0025   | 0,701697 | Média   |
| Parintins             | 109225  | 0,000208 | 0,597313 | Média   |
| Careiro da<br>várzea  | 26722   | 0,001111 | 0,586114 | Média   |
| Boa vista do<br>Ramos | 16820   | 0,003333 | 0,539394 | Média   |
| Rio preto da<br>Eva   | 28999   | 0,000667 | 0,523481 | Média   |
| Amaná                 | 11636   | 0,003333 | 0,451754 | Regular |

A Tabela 91 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Amapá no ano de 2013. Consegue-se, inferir com a leitura da tabela, por sua vez, que o município que apresentou classificação Alta de eficiência por tamanho de população, no combate ao crime de homicídio, foi: Macapá (1,00). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Amapá, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa, principal exemplo é Macapá (2,82E-05). Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2013.

Tabela 91: Eficiência do Estado do AMAPÁ e DMU, ano 2013.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU    | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|--------|-----------|----------------------------------------------|---------------------------------------------------------------|---------------|
| AP                                               | Macapá | 437256    | 2,82E-05                                     | 1                                                             | Alta          |

Fonte: Elaboração própria.

A Tabela 92 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Mato Grosso no ano de 2013, sendo que os únicos municípios que apresentaram eficiência Alta foram: Araguainha (1,00), Ponte Branca (1,00) e Serra Nova Dourada. Consegue-se, inferir com a leitura da tabela, por sua vez, que os municípios que apresentaram classificação Alta de eficiência, por tamanho de população, no

combate ao crime de homicídio, foram: Araguainha (1,00), Barra do Bugres (1,00), Campo Novo do Parecis (1,00), Ipiranga do norte (1,00), Juína (1,00), Lucas do Rio Verde (1,00), Mirassol d'oeste (1,00), Nova Mutum (1,00), Ponte Branca (1,00), Rondonópolis (1,00), Serra Nova Dourada (1,00), Tangara da Serra (1,00), Vila Rica (1,00), Cuiabá (0,96), Campo Verde (0,93), Torixoreu (0,93), Sinop (0,92), Araguaína (0,79) e Sapezal (0,78). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Mato Grosso, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa. Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2013.

Tabela 92: Eficiência do Estado do MATO GROSSO e DMU, ano 2013.

| Eficiência  |                       |           |             |            |               |  |
|-------------|-----------------------|-----------|-------------|------------|---------------|--|
| Unidade     |                       |           | Eficiência  |            |               |  |
| Federada da | DMH                   | População |             | por        | Classifiassão |  |
| Amazônia    | DMU                   |           | Total Geral | Tamanho da | Classificação |  |
| Legal (UF)  |                       |           | (eftg)      | População  |               |  |
|             |                       | 1004      | 1           | (eftfp)    | A 1.          |  |
|             | Araguainha            | 1024      | 1           | 1          | Alta          |  |
|             | Barra do Bugres       | 33022     | 0,000385    | 1          | Alta          |  |
|             | Campo Novo do Parecis | 30335     | 0,000233    | 1          | Alta          |  |
|             | Ipiranga do norte     | 6057      | 0,003333    | 1          | Alta          |  |
|             | Juína                 | 39592     | 0,000192    | 1          | Alta          |  |
|             | Lucas do Rio<br>Verde | 52843     | 0,000182    | 1          | Alta          |  |
|             | Mirassol d'oeste      | 26002     | 0,000625    | 1          | Alta          |  |
|             | Nova Mutum            | 36659     | 0,00025     | 1          | Alta          |  |
|             | Ponte Branca          | 1679      | 1           | 1          | Alta          |  |
|             | Rondonópolis          | 208019    | 3E-05       | 1          | Alta          |  |
|             | Serra Nova            | 1.462     | 1           | 1          | A 14 -        |  |
| MT          | Dourada               | 1463      | 1           | 1          | Alta          |  |
| 1111        | Tangara da Serra      | 90252     | 0,000106    | 1          | Alta          |  |
|             | Vila Rica             | 22990     | 0,000833    | 1          | Alta          |  |
|             | Cuiabá                | 569830    | 1,47E-05    | 0,969657   | Alta          |  |
|             | Campo Verde           | 35578     | 0,000278    | 0,93965    | Alta          |  |
|             | Torixoreu             | 3859      | 0,005       | 0,938604   | Alta          |  |
|             | Sinop                 | 123634    | 6,13E-05    | 0,922199   | Alta          |  |
|             | Araguaína             | 3133      | 0,005       | 0,796296   | Alta          |  |
|             | Sapezal               | 20934     | 0,000417    | 0,785366   | Alta          |  |
|             | Pedra preta           | 16348     | 0,001       | 0,730588   | Média         |  |
|             | Barra do Garças       | 57791     | 0,000164    | 0,729158   | Média         |  |
|             | Castanheira           | 8353      | 0,0025      | 0,671683   | Média         |  |
|             | Terra nova do norte   | 10621     | 0,000909    | 0,654701   | Média         |  |
|             | União do sul          | 3639      | 0,0025      | 0,65017    | Média         |  |

| Tapura          | ah       | 11586  | 0,001    | 0,638321 | Média   |
|-----------------|----------|--------|----------|----------|---------|
| Cácere          |          | 89683  | 8,7E-05  | 0,626775 | Média   |
| Várzea          | a grande | 262880 | 3,92E-05 | 0,609288 | Média   |
| Colíde          | r        | 31515  | 0,000435 | 0,50479  | Média   |
| Alto ta         | quari    | 9070   | 0,001667 | 0,338144 | Regular |
| São Jo<br>Xingu |          | 5333   | 0,0025   | 0,164665 | Baixa   |

A Tabela 93 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado de Rondônia no ano de 2013, no qual todos os municípios apresentaram eficiência Baixa, com destaque para: Ariquemes (7,69E-05). Consegue-se, inferir com a leitura da tabela, por sua vez, que o município que apresentou classificação Alta de eficiência, por tamanho de população no combate ao crime de homicídio, foi: Cacoal (1,00). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado de Rondônia, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa. Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2013.

Tabela 93: Eficiência do Estado de RONDÔNIA e DMU, ano 2013.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU       | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|-----------|-----------|----------------------------------------------|---------------------------------------------------------------|---------------|
|                                                  | Cacoal    | 85863     | 0,000132                                     | 1                                                             | Alta          |
| RO                                               | Jaru      | 55597     | 0,000286                                     | 0,699766                                                      | Média         |
| 110                                              | Ariquemes | 101269    | 7,69E-05                                     | 0,527695                                                      | Média         |
|                                                  | Ji-Paraná | 128026    | 0,000115                                     | 0,512679                                                      | Média         |

Fonte: Elaboração própria.

A Tabela 94 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado de Roraima no ano de 2013. Consegue-se, inferir com a leitura da tabela, por sua vez, que o município que apresentou classificação Regular de eficiência por tamanho de população no combate ao crime de homicídio, foi: Boa Vista (0,43). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado de Roraima, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa. Não foi

possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2013.

Tabela 94: Eficiência do Estado de RORAIMA e DMU, ano 2013.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU       | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|-----------|-----------|----------------------------------------------|---------------------------------------------------------------|---------------|
| RR                                               | Boa vista | 308996    | 3,02E-05                                     | 0,431658                                                      | Regular       |

Fonte: Elaboração própria.

## 5.13. Eficiência, ano base 2014.

A Tabela 95 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Acre no ano de 2014. Consegue-se, inferir com a leitura da tabela, por sua vez, que o município que apresentou classificação Regular de eficiência por tamanho de população no combate ao crime de homicídio, foi: Rio Branco (0,26). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Acre, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa (3,1E-05). Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2014.

Tabela 95: Eficiência do Estado do ACRE e DMU, ano 2014.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU        | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|------------|-----------|----------------------------------------------|---------------------------------------------------------------|---------------|
| AC                                               | Rio Branco | 363928    | 3,1E-05                                      | 0,267228                                                      | Regular       |

Fonte: Elaboração própria.

A Tabela 96 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Amazonas no ano de 2014. Consegue-se inferir com a leitura da tabela, que os municípios que apresentaram classificação Alta de eficiência, por tamanho de população no combate ao crime de homicídio, foram: Anori (1,00), Barcelos (1,00), Caapiranga (1,00), Canutama (1,00), Careiro da Várzea (1,00), Coari (1,00), Eirunepé (1,00), Envira (1,00), Itacoatiara (1,00), Lábrea (1,00), Manaus (1,00), Maués (0,88)

Presidente Figueiredo (0,81), Urucurituba (1,00), Tapauá (1,00), Itapiranga (0,97), Parintins (0,95), Anamã (0,88) e Beruri (0,87). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Amazonas, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa, principal exemplo Manaus (5,77E-06). Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2014.

Tabela 96: Eficiência do Estado do AMAZONAS e DMU, ano 2014.

| Unidade<br>Federada da<br>Amazônia | DMU                      | População | Eficiência<br>Total Geral | Eficiência<br>por Tamanho<br>da População | Classificação |
|------------------------------------|--------------------------|-----------|---------------------------|-------------------------------------------|---------------|
| Legal (UF)                         |                          |           | (eftg)                    | (eftfp)                                   |               |
|                                    | Anori                    | 18826     | 0,0025                    | 1                                         | Alta          |
|                                    | Barcelos                 | 27273     | 0,002                     | 1                                         |               |
|                                    | Caapiranga               | 12214     | 0,003333                  | 1                                         | Alta          |
|                                    | Canutama                 | 14944     | 0,001429                  | 1                                         | Alta          |
|                                    | Careiro da<br>Várzea     | 27357     | 0,001                     | 1                                         | Alta          |
|                                    | Coari                    | 82209     | 0,000185                  | 1                                         | Alta          |
|                                    | Eirunepé                 | 33580     | 0,000833                  | 1                                         | Alta          |
|                                    | Envira                   | 18422     | 0,001022                  | 1                                         | Alta          |
|                                    | Itacoatiara              | 95714     | 0,000192                  | 1                                         | Alta          |
|                                    | Lábrea                   | 42439     | 0,000909                  | 1                                         | Alta          |
|                                    | Manaus                   | 2020301   | 5,77E-06                  | 1                                         | Alta          |
|                                    | Maués                    | 58834     | 0,001005                  | 1                                         | Alta          |
| AM                                 | Presidente<br>Figueiredo | 31903     | 0,000313                  | 1                                         | Alta          |
|                                    | Urucurituba              | 20621     | 0,005                     | 1                                         | Alta          |
|                                    | Tapauá                   | 18266     | 0,001                     | 1                                         | Alta          |
|                                    | Itapiranga               | 8864      | 0,003465                  | 0,97585                                   | Alta          |
|                                    | <b>Parintins</b>         | 110411    | 0,000196                  | 0,954427                                  | Alta          |
|                                    | Anamã                    | 11981     | 0,01                      | 0,888901                                  | Alta          |
|                                    | Beruri                   | 17755     | 0,0025                    | 0,870736                                  | Alta          |
|                                    | Borba                    | 38688     | 0,000556                  | 0,747622                                  | Média         |
|                                    | Urucará                  | 17264     | 0,001429                  | 0,737025                                  | Média         |
|                                    | Apuí                     | 20258     | 0,000435                  | 0,632901                                  | Média         |
|                                    | Nova Olinda              | 34498     | 0,000714                  | 0,622111                                  | Média         |
|                                    | do Norte                 |           |                           |                                           |               |
|                                    | Rio preto da<br>Eva      | 29771     | 0,000455                  | 0,513872                                  | Média         |
|                                    | Uarini                   | 12963     | 0,001429                  | 0,422977                                  | Regular       |

Fonte: Elaboração própria.

A Tabela 97 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Amapá no ano de 2014. Consegue-se, inferir com a leitura da tabela, por sua vez, que o município que apresentou classificação Alta de eficiência por tamanho de população, no combate ao crime de homicídio, foi: Macapá (1,00). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Amapá, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa, principal exemplo é Macapá (2,79E-05). Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2014.

Tabela 97: Eficiência do Estado do AMAPÁ e DMU, ano 2014.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                        | População | Eficiência<br>Total Geral<br>(eftg) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|----------------------------|-----------|-------------------------------------|---------------------------------------------------------------|---------------|
|                                                  | Macapá                     | 446757    | 2,79E-05                            | 0,987262                                                      | Alta          |
| AP                                               | Pedra branca<br>do Amapari | 13411     | 0,000909                            | 0,057434                                                      | Baixa         |

Fonte: Elaboração própria.

A Tabela 98 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Mato Grosso no ano de 2014. Consegue-se, inferir com a leitura da tabela, por sua vez, que os municípios que apresentaram classificação Alta de eficiência, por tamanho de população, no combate ao crime de homicídio, foram: Barra do Bugres (1,00), Ipiranga do norte (1,00), Mirassol d'oeste (1,00), Novo mutum (1,00), Novo Olímpia (1,00), Pedra preta (1,00), Sinop (1,00), Tangara da serra (1,00), Tapurah (1,00), Vila rica (1,00), Sapezal (0,86) e Campo novo do Parecis (0,80). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Mato Grosso, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa. Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2014.

Tabela 98: Eficiência do Estado do MATO GROSSO e DMU, ano 2014.

| Unidade     | referred do Estado de |           |             | Eficiência |               |
|-------------|-----------------------|-----------|-------------|------------|---------------|
| Federada da |                       | População | Eficiência  | por        |               |
| Amazônia    | DMU                   | ropulação | Total Geral | Tamanho da | Classificação |
| Legal (UF)  |                       |           | (eftg)      | População  |               |
| Legal (OF)  |                       |           |             | (eftfp)    |               |
|             | Barra do Bugres       | 33365     | 0,000385    | 1          | Alta          |
|             | Ipiranga do norte     | 6347      | 0,002       | 1          | Alta          |
|             | Mirassol d'oeste      | 26188     | 0,000769    | 1          | Alta          |
|             | Novo mutum            | 38206     | 0,000244    | 1          | Alta          |
|             | Nova Olímpia          | 18704     | 0,00345     | 1          | Alta          |
|             | Pedra preta           | 16513     | 0,005213    | 1          | Alta          |
|             | Sinop                 | 126817    | 6,33E-05    | 1          | Alta          |
|             | Tangara da serra      | 92298     | 0,000164    | 1          | Alta          |
|             | Tapurah               | 11950     | 0,004636    | 1          | Alta          |
|             | Vila rica             | 23469     | 0,005       | 1          | Alta          |
|             | Sapezal               | 21811     | 0,000588    | 0,860428   | Alta          |
|             | Campo novo do         | 31171     | 0,000244    | 0,807947   | Alta          |
| MT          | Parecis               | 311/1     | 0,000244    | 0,007947   | Alla          |
|             | Paranaíta             | 10823     | 0,000909    | 0,729146   | Média         |
|             | Cuiabá                | 575480    | 1,42E-05    | 0,696788   | Média         |
|             | Rondonópolis          | 211718    | 3,5E-05     | 0,544411   | Média         |
|             | Serra nova            | 1492      | 0,018892    | 0,528424   | Média         |
|             | dourada               | 1492      | 0,018892    | 0,328424   |               |
|             | Várzea grande         | 265775    | 3,03E-05    | 0,485217   | Regular       |
|             | Querência             | 15121     | 0,000625    | 0,450026   | Regular       |
|             | Alto taquari          | 9376      | 0,002       | 0,373267   | Regular       |
|             | Castanheira           | 8379      | 0,0025      | 0,296636   | Regular       |
|             | Nova guarita          | 4660      | 0,01        | 0,264096   | Regular       |
|             | São José do           | 5354      | 0,0025      | 0 145466   | Baixa         |
|             | Xingu                 | J3J4      | 0,0023      | 0,145466   | Daixa         |

A Tabela 99 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado de Rondônia no ano de 2014, no qual todos os municípios apresentaram eficiência Baixa, com destaque para: Ariquemes (0,000102). Consegue-se, inferir com a leitura da tabela, por sua vez, que o município que apresentou classificação Alta de eficiência, por tamanho de população no combate ao crime de homicídio, foi: Cacoal (1,00). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado de Rondônia, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa. Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2014.

Tabela 99: Eficiência do Estado de RONDÔNIA e DMU, ano 2014.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU       | População | Eficiência<br>Total Geral<br>(eftg) | Eficiência<br>por Tamanho<br>da População<br>(eftfp) | Classificação |
|--------------------------------------------------|-----------|-----------|-------------------------------------|------------------------------------------------------|---------------|
| RO                                               | Cacoal    | 86556     | 0,000122                            | 1                                                    | Alta          |
| 110                                              | Ariquemes | 102860    | 0,000102                            | 0,584193                                             | Média         |

A Tabela 100 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado de Roraima no ano de 2014. Consegue-se, inferir com a leitura da tabela, por sua vez, que os municípios que apresentaram classificação Regular de eficiência, por tamanho de população no combate ao crime de homicídio, foram: Boa Vista (0,43) e Canta (0,32). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado de Roraima, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa. Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2014.

Tabela 100: Eficiência do Estado de RORAIMA e DMU, ano 2014.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU       | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|-----------|-----------|----------------------------------------------|---------------------------------------------------------------|---------------|
| RR                                               | Boa vista | 308996    | 3,02E-05                                     | 0,431658                                                      | Regular       |
| Tut                                              | Canta     | 15774     | 0,000667                                     | 0,327406                                                      | Regular       |

Fonte: Elaboração própria.

#### 5.14. Eficiência, ano base 2015.

A Tabela 101 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Acre no ano de 2015. Consegue-se, inferir com a leitura da tabela, por sua vez, que o município que apresentou classificação Regular de eficiência por tamanho de população no combate ao crime de homicídio, foi: Rio Branco (0,26). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Acre, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa (3,5E-

05). Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2015.

Tabela 101: Eficiência do Estado do ACRE e DMU, ano 2015.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU        | População | Eficiência<br>Total Geral<br>(eftg) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|------------|-----------|-------------------------------------|---------------------------------------------------------------|---------------|
| AC                                               | Rio Branco | 370550    | 3,5E-05                             | 0,260819                                                      | Regular       |

Fonte: Elaboração própria.

A Tabela 102 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Amazonas no ano de 2015. Consegue-se inferir com a leitura da tabela, que os municípios que apresentaram classificação Alta de eficiência, por tamanho de população no combate ao crime de homicídio, foram: Apuí (1,00), Barcelos (1,00), Beruri (1,00), Careiro da Várzea (1,00), Coari (1,00), Fonte Boa (1,00), Ipixuna (1,00), Itacoatiara (1,00), Lábrea (1,00), Manaus (1,00), Maués (1,00), Rio Preto da Eva (1,00) Tapauá (1,00), Urucará (1,00), Japurá (0,91), Anamã (0,91), Borba (0,81) e Parintins (0,78). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Amazonas, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa, principal exemplo Manaus (5,06E-06). Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2015.

Tabela 102: Eficiência do Estado do AMAZONAS e DMU, ano 2015.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU         | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|-------------|-----------|----------------------------------------------|---------------------------------------------------------------|---------------|
|                                                  | Apuí        | 20648     | 0,000625                                     | 1                                                             | Alta          |
|                                                  | Barcelos    | 27433     | 0,000385                                     | 1                                                             |               |
|                                                  | Beruri      | 18171     | 0,003333                                     | 1                                                             | Alta          |
|                                                  | Careiro da  |           |                                              |                                                               | Alta          |
|                                                  | Várzea      | 27981     | 0,001667                                     | 1                                                             | Alta          |
| AM                                               | Coari       | 83078     | 0,000185                                     | 1                                                             | Alta          |
|                                                  | Fonte Boa   | 20742     | 0,001111                                     | 1                                                             | Alta          |
|                                                  | Ipixuna     | 26860     | 0,003333                                     | 1                                                             | Alta          |
|                                                  | Itacoatiara | 97122     | 0,0002                                       | 1                                                             | Alta          |
|                                                  | Lábrea      | 43263     | 0,001429                                     | 1                                                             | Alta          |
|                                                  | Manaus      | 2057711   | 5,06E-06                                     | 1                                                             | Alta          |
|                                                  | Maués       | 59983     | 0,0005                                       | 1                                                             | Alta          |
|                                                  |             |           |                                              |                                                               |               |

| Rio Preto da |        |          |          | A 14 o |
|--------------|--------|----------|----------|--------|
| Eva          | 30530  | 0,000323 | 1        | Alta   |
| Tapauá       | 18152  | 0,0004   | 1        | Alta   |
| Urucará      | 17163  | 0,001667 | 1        | Alta   |
| Japurá       | 5125   | 0,01     | 0,915061 | Alta   |
| Anamã        | 12320  | 0,003333 | 0,913218 | Alta   |
| Borba        | 39292  | 0,001    | 0,813231 | Alta   |
| Parintins    | 111575 | 0,000204 | 0,782038 | Alta   |
| Uarini       | 13121  | 0,002    | 0,723756 | Média  |
| Nova Olinda  |        |          |          | Média  |
| do norte     | 35156  | 0,000625 | 0,551861 | Media  |
| Careiro      | 36435  | 0,000526 | 0,527739 | Média  |

A Tabela 103 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Amapá no ano de 2015. Consegue-se, inferir com a leitura da tabela, por sua vez, que o município que apresentou classificação Alta de eficiência por tamanho de população, no combate ao crime de homicídio, foi: Macapá (0,94). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Amapá, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa, principal exemplo é Macapá (2,6E-05). Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2015.

Tabela 103: Eficiência do Estado do AMAPÁ e DMU, ano 2015.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                        | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|----------------------------|-----------|----------------------------------------------|---------------------------------------------------------------|---------------|
|                                                  | Macapá                     | 456171    | 2,6E-05                                      | 0,940383                                                      | Alta          |
| AP                                               | Pedra branca<br>do Amapari | 13988     | 0,01                                         | 0,022255                                                      | Baixa         |

Fonte: Elaboração própria.

A Tabela 104 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado do Mato Grosso no ano de 2015. Conseguese, inferir com a leitura da tabela, por sua vez, que os municípios que apresentaram classificação Alta de eficiência, por tamanho de população, no combate ao crime de homicídio, foram: Ipiranga do Norte (1,00), Novo Mutum (1,00), Nova Olímpia (1,00), Sapezal (1,00), Tangara da Serra (1,00), Campo Novo do Parecis (0,85), Querência (0,80) e

Várzea Grande (0,75). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado do Mato Grosso, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa. Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2015.

Tabela 104: Eficiência do Estado do MATO GROSSO e DMU, ano 2015.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                   | População | Eficiência<br>Total Geral<br>(eftg) | Eficiência<br>por<br>Tamanho da<br>População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|-----------------------|-----------|-------------------------------------|------------------------------------------------------------------|---------------|
|                                                  | Ipiranga do Norte     | 6629      | 0,004207                            | 1                                                                | Alta          |
|                                                  | Novo Mutum            | 39712     | 0,000286                            | 1                                                                | Alta          |
|                                                  | Nova Olímpia          | 18965     | 0,01196                             | 1                                                                | Alta          |
|                                                  | Sapezal               | 22665     | 0,0005                              | 1                                                                | Alta          |
|                                                  | Tangara da Serra      | 94289     | 0,000147                            | 1                                                                | Alta          |
|                                                  | Campo Novo do Parecis | 31985     | 0,000303                            | 0,854322                                                         | Alta          |
|                                                  | Querência             | 15597     | 0,000769                            | 0,802893                                                         | Alta          |
| MT                                               | Várzea Grande         | 268594    | 3,85E-05                            | 0,754184                                                         | Alta          |
|                                                  | Barra do Bugres       | 33700     | 0,000586                            | 0,650322                                                         | Média         |
|                                                  | Cuiabá                | 580489    | 1,54E-05                            | 0,640272                                                         | Média         |
|                                                  | Sinop                 | 129916    | 6,58E-05                            | 0,465475                                                         | Regular       |
|                                                  | Rondonópolis          | 215320    | 3,57E-05                            | 0,40864                                                          | Regular       |
|                                                  | Mirassol d'oeste      | 26369     | 0,000909                            | 0,398071                                                         | Regular       |
|                                                  | Alto taquari          | 9674      | 0,0025                              | 0,361655                                                         | Regular       |
|                                                  | São José do           |           |                                     |                                                                  | Baixa         |
|                                                  | Xingu                 | 5375      | 0,01                                | 0,148288                                                         |               |
|                                                  | Altas Garças          | 11229     | 0,001                               | 0,024976                                                         | Baixa         |

Fonte: Elaboração própria.

A Tabela 105 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado de Rondônia no ano de 2015, no qual todos os municípios apresentaram eficiência Baixa, com destaque para: Cacoal e Ariquemes (9,52E-05). Consegue-se, inferir com a leitura da tabela, por sua vez, que o município que apresentou classificação Alta de eficiência, por tamanho de população no combate ao crime de homicídio, foi: Cacoal (1,00). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado de Rondônia, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram

eficiência significativa. Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2015.

Tabela 105: Eficiência do Estado de RONDÔNIA e DMU, ano 2015.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU       | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>(eftfp) | Classificação |
|--------------------------------------------------|-----------|-----------|----------------------------------------------|------------------------------------------------------|---------------|
|                                                  | Cacoal    | 87226     | 9,52E-05                                     | 1                                                    | Alta          |
| RO                                               | Buritis   | 37838     | 0,000256                                     | 0,56652                                              | Média         |
|                                                  | Ariquemes | 104401    | 9,52E-05                                     | 0,449767                                             | Regular       |

Fonte: Elaboração própria.

A Tabela 106 abaixo demonstra a estimativa do escore de eficiência técnica da variável Óbito por Causas Violentas (homicídios), correlacionada como a eficiência total geral das demais variáveis do modelo do Estado de Roraima no ano de 2015. Consegue-se, inferir com a leitura da tabela, por sua vez, que o município que apresentou classificação Regular de eficiência, por tamanho de população no combate ao crime de homicídio, foi: Boa Vista (0,49). Importante salientar a considerável heterogeneidade existente entre os diversos municípios, que compõem o Estado de Roraima, essencialmente, as diferenças de natureza socioeconômica, que estimadas no modelo não apresentaram eficiência significativa. Não foi possível calcular estimativas de escores de eficiência para os demais municípios neste período analisado de 2015.

Tabela 106: Eficiência do Estado de RORAIMA e DMU, ano 2015.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU       | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|-----------|-----------|----------------------------------------------|---------------------------------------------------------------|---------------|
| RR                                               | Boa Vista | 320714    | 3,24E-05                                     | 0,497367                                                      | Regular       |

Fonte: Elaboração própria.

# 6. ANÁLISE COMPARATIVA EMPÍRICA DOS RESULTADOS DE EFICIÊNCIA TÉCNICA (DEA), PRINCIPAIS DMU'S DOS ESTADOS DA AMAZÔNIA LEGAL.

A proposta desta seção da tese é demonstra a análise comparativa empírica dos resultados de eficiência técnica a partir de Análise de Envoltórios de Dados (DEA) das principais DMU's comparados com a média dos valores quantitativos obtidos com a pesquisa e coleta de dados secundários provenientes dos municípios dos Estados da Amazônia Legal no período de 2002 a 2015.

A metodologia utilizada teve como escopo estrutural apresentar os valores descritivos médios destes municípios e assim comparar com a média descritiva da principal DMU de cada Estado. A partir dos resultados obtidos foi escalonado um escore de eficiência técnica calculado por município através de estratos de camadas de eficiência: 0,01 e 0,25 (baixa eficiência), 0,25 e 0,50 (regular eficiência), 0,50 e 0,75 (eficiência média) e 0,75 e 1,00 (eficiência alta). No bojo da análise será citado o referencial teórico pesquisado como forma de fundamentar os objetivos e as hipóteses da tese.

# 6.1. Média das variáveis dos municípios da Amazônia Legal no período de 2002 a 2015.

A partir da análise descritiva das variáveis prospostas no modelo DEA, conforme Tabela 107, consegue-se delimitar a evolução média da magnitude dos índices de eficiência técnica calculados para os municípios da Amazônia Legal no período de 2002 a 2015. Demonstra-se que a evolução descritiva da média do índice de eficiência por tamanho populacional (eftp), apresenta-se no valor de (0,72), conforme escore de eficiência, classifica-se como **Média** eficiência no combate ao crime de óbitos por causas externas (homicídios). Neste contexto, é importante ressaltar que, no período analisado, o quantitativo da média da população ficou na ordem de (30.784), enquanto que a média de óbitos por causas externas (homicídios) se consolidou com a média de (9192).

O quantitativo máximo populacional de (34.286) foi constatado no ano de 2015, inerente a isto, conseguiu-se perceber que o resultado estimado do escore de eficiência técnica na ordem de (0,79) apresentou a maior magnitude dentre os demais escores no período, sendo este classificado como Alto.

Por sua vez, é importante ressaltar que o total de óbitos por causas externas (homicídios), no mesmo ano, foi de (6447), ficando, portanto, abaixo da média do número

de óbitos por causas externas (homicídios) no período analisado (9192). Isto fundamenta a hipótese de uma correlação positiva entre o número populacional do município e sua estimação de eficiência técnica, isto é quanto maior a magnitude populacional do município, maior tende a ser o escore de eficiência técnica de combate ao quantitativo de óbito por causas externas (homicídios) nos municípios da Amazônia Legal.

Diante deste arcabouço, cita-se o ano de 2004, no qual evidenciou-se o máximo do quantitativo de casos de óbitos por causas externas (homicídios) e, constatou-se, por sua vez, que o quantitativo populacional dos municípios (28756) foi, significativamente, menor do que a média do quantitativo populacional (30784) de todo período analisado, no entanto, apresentando escore de eficiência técnica (0,69), bem menor do que o escore da média (0,72). Desta forma, reforça-se a construção do argumento empírico, a respeito da correlação positiva entre a magnitude do quantitativo populacional e a estimação do escore de eficiência técnica no combate ao crime de óbito por causas externas (homicídios).

Tabela 107: Média da eficiência dos municípios da Amazônia Legal.

|         | PIB      | População  | Óbitos Causas |      |      |
|---------|----------|------------|---------------|------|------|
| Período | (RS 1,00 | (Unidade)  | Externas      | Eftg | Eftp |
|         | mil)     | (Ollidade) | (Homicídios)  |      |      |
| 2002    | -        | 27270      | 12845         | 0,26 | 0,73 |
| 2003    | -        | 27774      | 13469         | 0,23 | 0,71 |
| 2004    | -        | 28756      | 13828         | 0,27 | 0,69 |
| 2005    | 212116,6 | 29340      | 12015         | 0,25 | 0,65 |
| 2006    | 232126,7 | 29920      | 12112         | 0,22 | 0,68 |
| 2007    | 261330,5 | 29275      | 10060         | 0,16 | 0,64 |
| 2008    | 311712,1 | 30280      | 10292         | 0,19 | 0,69 |
| 2009    | 331991,7 | 30681      | 8079          | 0,16 | 0,71 |
| 2010    | 396635,6 | 31585      | 6629          | 0,10 | 0,71 |
| 2011    | 463717,7 | 32009      | 6888          | 0,11 | 0,75 |
| 2012    | 511209,6 | 32461      | 6088          | 0,15 | 0,76 |
| 2013    | 575029,3 | 33473      | 4901          | 0,07 | 0,76 |
| 2014    | 621496,6 | 33867      | 5028          | 0,08 | 0,75 |
| 2015    | 647880,4 | 34286      | 6447          | 0,12 | 0,79 |
| Média   | 415022,4 | 30784      | 9192          | 0,17 | 0,72 |
| Máximo  | 647880,4 | 34286      | 13828         | 0,27 | 0,79 |
| Mínimo  | 212116,6 | 27270      | 4901          | 0,07 | 0,64 |

Fonte: DATASUS, IBGE e FINBRA (2018).

Elaboração do autor.

A evolução dos valores quantitativos do Produto Interno Bruto (PIB) dos municípios, apresentou-se de forma crescente no decorrer do período, estimando em decorrência disto uma média descritiva no valor de (R\$ 415.022,40). Observando o comportamento desta

evolução quantitativa do PIB, percebe-se que no ano de 2005, evidenciou-se o valor mínimo do período analisado (R\$ 212.116,60), assim como um número expressivo de óbitos por causas externas (homicídios) (12015), que na ocasião for a evidenciado um escore de eficiência total geral (eftg) classificado como **Baixo**.

Ao analisar a evolução percentual dos gastos sociais e econômicos relacionada ao total agregado no período, consegue-se perceber que a estimação do escore da eficiência total geral (eftg) está condicionada a um conjunto de interações percentuais entre as variáveis do modelo. Desta forma, fica criterioso informar, que o resultado da média da (eftg) neste contexto analisado, classificou-se com nível de eficiência **Baixo** (0,17) no combate ao crime de óbito por causas externas (homicídios).

Por sua vez, a partir da leitura da Tabela 108, constata-se a evolução descritiva das magnitudes das médias percentuais de gastos sociais e econômicos dos municípios, dentre tais, destacam-se os seguintes gastos: gastos com educação (42,7%), gastos com saúde (31,8%) e gastos com urbanização (15,2%). Neste contexto, podemos inserir na análise as contribuições empíricas dos resultados encontrados por Araújo Jr. e Fajnzylber (2000), as quais indicam uma relação negativa de relação entre variáveis educacionais e crime de homicídio, por sua vez levando a inferir que parcela da eficiência no combate ao crime de óbitos por causas externas (homicídio) pode ser explicada por níveis de gastos em educação.

Posteriormente, outros gastos menos expressivos no periodo analisado foram encontrados, dentre tais: gastos com assistência social (4,4%), gastos com saneamento (4,2%) e gastos com segurança pública (1,7%). Observa-se, neste contexto, a pouca expressividade, essencialmente, na média de gastos com segurança pública nos municípios da Amazônia Legal associado a isto o valor dos escores de eficiência obtidos com o resultado, que se demonstrou ineficiente para o combate do crime de óbitos por causas externas (homicídios) no período estudado.

Tabela 108: Participação percentual das variáveis - Amazônia Legal.

|         |        | 1 5 1    |       |            |         | U           |            |      |
|---------|--------|----------|-------|------------|---------|-------------|------------|------|
|         | G. A.  | G.       | G.    | G.         | G. S.   | G.          | Total      |      |
| Período | Social | Educação | Saúde | Saneamento | Pública | Urbanização | Agregado   | Eftg |
|         | (%)    | (%)      | (%)   | (%)        | (%)     | (%)         | Agregado   |      |
| 2002    | 5,1    | 39,3     | 29,7  | 5,92       | 1,3     | 18,7        | 9860144,6  | 0,26 |
| 2003    | 4,9    | 41,4     | 32,0  | 3,98       | 1,4     | 16,2        | 10214759,9 | 0,23 |
| 2004    | 4,6    | 41,3     | 32,8  | 3,58       | 1,3     | 16,4        | 12138090,0 | 0,27 |
| 2005    | 4,8    | 41,7     | 34,0  | 3,29       | 1,5     | 14,7        | 13647639,0 | 0,25 |
|         |        |          |       |            |         |             |            |      |

| 2006   | 4,7 | 39,6 | 33,3 | 4,35 | 1,6 | 16,4 | 16990626,0 | 0,22 |
|--------|-----|------|------|------|-----|------|------------|------|
| 2007   | 4,4 | 41,5 | 32,5 | 4,23 | 1,6 | 15,7 | 19369045,1 | 0,16 |
| 2008   | 4,1 | 41,0 | 31,7 | 3,38 | 1,7 | 18,2 | 24005744,6 | 0,19 |
| 2009   | 4,2 | 42,6 | 33,1 | 3,59 | 1,6 | 14,9 | 25658671,9 | 0,16 |
| 2010   | 4,3 | 42,7 | 31,6 | 4,21 | 1,5 | 15,7 | 30068578,6 | 0,10 |
| 2011   | 4,2 | 45,5 | 31,1 | 3,50 | 1,5 | 14,2 | 36093170,2 | 0,11 |
| 2012   | 4,2 | 45,7 | 30,2 | 4,03 | 1,7 | 14,2 | 40448552,1 | 0,15 |
| 2013   | 4,0 | 46,3 | 31,3 | 4,23 | 1,8 | 12,4 | 43631492,3 | 0,07 |
| 2014   | 4,0 | 45,0 | 31,1 | 5,09 | 2,3 | 12,5 | 50623216,8 | 0,08 |
| 2015   | 4,0 | 44,4 | 30,7 | 5,38 | 2,9 | 12,6 | 54883476,6 | 0,12 |
| Média  | 4,4 | 42,7 | 31,8 | 4,2  | 1,7 | 15,2 | 27688086,3 | 0,17 |
| Máximo | 5,1 | 46,3 | 34,0 | 5,9  | 2,9 | 18,7 | 54883476,6 | 0,27 |
| Mínimo | 4,0 | 39,3 | 29,7 | 3,3  | 1,3 | 12,4 | 9860144,6  | 0,07 |

Fonte: DATASUS, IBGE e FINBRA (2018).

Elaboração do autor.

A partir das contribuições de Cerqueira e Lobão (2003), consegue-se construir um entendimento mais robusto e objetivo das relações existentes entre investimento em segurança pública e diminuição da criminalidade, principlamente, os crimes de natureza violenta. Além destes autores, observa-se em Fajnzylber et. al. (1998) outra contribuição significativa, que constrói o entendimento empírico sobre esta relação entre diminuição de homicídios e investimentos em segurança pública, no qual identificou relação significativa de correlação entre tais variaveis.

## 6.2.1. Estado do Acre, município de Rio Branco.

No que diz respeito, a análise da média da eficiência total por tamanho da população (eftp), permite-se observar a partir da magnitude média que, o município de **Rio Branco** apresentou uma magnitude média de eficiência por tamanho populacional classificada como de **média eficiência** (0,62) e menor, quando comparada com a magnitude da média dos demais municípios da Amazônia Legal. Importante ressaltar neste contexto, que o ano de 2014, consolidou um total máximo de óbitos por causas externas (homicídios) na ordem de (323), assim como uma população (363928) e, por fim, apresentando um escore de eficiência técnica classificado como **Média** (0,27) no período analisado.

A Tabela 109 demonstra a evolução descritiva das médias dos indicadores de eficiência total geral (eftg) e eficiência total por tamanho da população (eftp) do município de **Rio Branco** do Estado do Acre. A partir de comparação empírica descritiva entre as médias, consegue-se perceber que a magnitude da média da eficiência total geral (eftg) estimada para o município de **Rio Branco**, relacionada como indicador de enfrentamento ao crime de óbitos

por causas externas (homicídio), apresentou-se com classificação **abaixo do menor nível de eficiência (0,00004) e menor** do que a magnitude da média dos demais municípios da Amazônia Legal, conforme (DATASUS, 2018).

Tabela 109: Média da eficiência do município de Rio Branco (AC).

| Período | PIB<br>(RS 1,00<br>mil) | População<br>(Unidade) | Óbitos Causas Externas<br>(Homicídios) | Eftg     | Eftp |
|---------|-------------------------|------------------------|----------------------------------------|----------|------|
| 2002    | 1840092,7               | 267740                 | 298                                    | 3,4E-05  | 0,88 |
| 2003    | 2047971,0               | 274555                 | 242                                    | 4,1E-05  | 0,54 |
| 2004    | 2377291,8               | 286082                 | 200                                    | 5,0E-05  | 1,00 |
| 2005    | 2696961,1               | 305731                 | 199                                    | 5,0E-05  | 0,86 |
| 2006    | 2936362,9               | 314127                 | 232                                    | 4,3E-05  | 0,88 |
| 2007    | 3406219,8               | 290639                 | 257                                    | 3,9E-05  | 1,00 |
| 2008    | 3988385,4               | 301398                 | 223                                    | 4,5E-05  | 0,80 |
| 2009    | 4681268,4               | 305954                 | 256                                    | 3,9E-05  | 0,40 |
| 2010    | 5125851,3               | 336038                 | 271                                    | 3,7E-05  | 0,38 |
| 2011    | 5516687,1               | 342298                 | 269                                    | 3,7E-05  | 0,38 |
| 2012    | 6270619,0               | 348354                 | 289                                    | 3,5E-05  | 0,56 |
| 2013    | 6807581,5               | 357194                 | 300                                    | 3,3E-05  | 0,45 |
| 2014    | 8174771,0               | 363928                 | 323                                    | 3,1E-05  | 0,27 |
| 2015    | 8266472,7               | 370550                 | 286                                    | 3,5E-05  | 0,26 |
| Média   | 4581181,1               | 318899                 | 260                                    | 0,000039 | 0,62 |
| Máximo  | 8266472,7               | 370550                 | 323                                    | 0,000040 | 1    |
| Mínimo  | 1840092,7               | 267740                 | 199                                    | 0,000039 | 0,26 |

Fonte: DATASUS, IBGE e FINBRA (2018).

Elaboração do autor.

A evolução dos valores quantitativos do Produto Interno Bruto (PIB) do município de Rio Branco, apresentou-se de forma crescente no decorrer do período, estimando em decorrência disto uma média descritiva no valor de (R\$ 4.581.181, 10). Observando o comportamento desta evolução quantitativa do PIB, percebe-se que no ano de 2015, evidenciou-se o valor máximo do período analisado (R\$ 8.266.472, 70), assim como apresentou um **número expressivo e maior** (286) do que a média de óbitos por causas externas (homicídios), que na ocasião fora evidenciado um escore de eficiência total geral (eftg) abaixo do menor nível de classificação de eficiência (3, 4E-05).

Ao analisar a evolução percentual dos gastos sociais e econômicos relacionada ao total agregado no período, consegue-se perceber que a estimação do escore da eficiência total geral (eftg) está condicionada a um conjunto de interações percentuais entre as variáveis do modelo. Desta forma, fica criterioso informar, que o resultado da média da (eftg), neste

contexto analisado, classificou-se **abaixo do menor nível de eficiência** (0,000039) no combate ao crime de óbito por causas externas (homicídios).

Tabela 110: Participação percentual das variáveis - Rio Branco (AC).

| Período | G. A.<br>Social | G.<br>Educação | G.<br>Saúde | G.<br>Saneamento | G. S.<br>Pública | G.<br>Urbanização | Total<br>Agregado<br>(R\$ 1,00 | Eftg     |
|---------|-----------------|----------------|-------------|------------------|------------------|-------------------|--------------------------------|----------|
|         | (%)             | (%)            | (%)         | (%)              | (%)              | (%)               | mil)                           |          |
| 2002    | 3,5             | 36,3           | 13,8        | 7,5              | 0,0              | 39,0              | 120206562,3                    | 3,4E-05  |
| 2003    | 2,8             | 28,0           | 21,9        | 8,7              | 0,4              | 38,3              | 103659285,1                    | 4,1E-05  |
| 2004    | 6,1             | 27,7           | 26,9        | 7,9              | 0,7              | 30,7              | 115041483,4                    | 5,0E-05  |
| 2005    | 4,4             | 26,7           | 23,7        | 8,1              | 0,8              | 36,3              | 145755430,1                    | 5,0E-05  |
| 2006    | 5,2             | 24,3           | 20,9        | 8,5              | 0,8              | 40,3              | 195662873,8                    | 4,3E-05  |
| 2007    | 5,9             | 26,0           | 23,2        | 9,5              | 1,0              | 34,4              | 199137477,6                    | 3,9E-05  |
| 2008    | 3,5             | 24,1           | 20,5        | 9,5              | 0,9              | 41,6              | 266545133                      | 4,5E-05  |
| 2009    | 4,2             | 25,1           | 24,0        | 9,7              | 1,2              | 35,8              | 237884350,1                    | 3,9E-05  |
| 2010    | 4,9             | 23,5           | 23,7        | 9,1              | 1,2              | 37,5              | 261655037,6                    | 3,7E-05  |
| 2011    | 4,4             | 27,1           | 24,0        | 9,4              | 1,3              | 33,9              | 292031383,8                    | 3,7E-05  |
| 2012    | 5,3             | 26,6           | 23,9        | 6,5              | 1,2              | 36,5              | 351344428,7                    | 3,5E-05  |
| 2013    | 4,3             | 28,0           | 24,1        | 2,6              | 1,1              | 39,9              | 397735846,6                    | 3,3E-05  |
| 2014    | 2,4             | 28,2           | 25,3        | 2,4              | 1,1              | 40,6              | 448165809,9                    | 3,1E-05  |
| 2015    | 3,1             | 28,4           | 23,5        | 2,3              | 2,4              | 40,3              | 472593754,2                    | 3,5E-05  |
| Média   | 4,3             | 27,1           | 22,8        | 7,3              | 1,0              | 37,5              | 257672775                      | 0,000039 |
| Máximo  | 6,1             | 36,3           | 26,9        | 9,7              | 2,4              | 41,6              | 472593754                      | 0,000040 |
| Mínimo  | 2,4             | 23,5           | 13,8        | 2,3              | 0,0              | 30,7              | 103659285                      | 0,000039 |

Fonte: DATASUS, IBGE e FINBRA (2018).

Elaboração do autor.

Por sua vez, constata-se na Tabela 110 a evolução descritiva das magnitudes das médias percentuais de gastos sociais e econômicos do município de **Rio Branco**, dentre tais, destacam-se os seguintes gastos: **gastos com urbanização** (37,5%), **gastos com educação** (27,1%) e gastos com saúde (22,8%). Neste contexto, podemos inserir na análise as contribuições empíricas de Glaeser e Sacerdote (1999), as quais se propuseram a investigar o efeito da urbanização das cidades na formação das taxas de crimes os níveis de crime, assim como procuraram responder que o porquê que os níveis de crimes nas cidades urbanizadas são mais elevados, por sua vez levando a inferir que parcela da eficiência no combate ao crime de óbitos por causas externas (homicídio) pode ser explicada por níveis de gastos em urbanização.

Posteriormente, outros gastos médios menos expressivos no periodo analisado foram estimados, dentre tais: gastos com saneamento (7,3%), gastos com assistência social (4,3%) e gastos com segurança pública (1,0%). Observa-se, neste contexto, a pouca expressividade, essencialmente, na média de gastos com segurança pública no município de

**Rio Branco** associado a isto o valor dos escores de eficiência obtidos com o resultado, que se demonstrou **abaixo da menor classificação de escore de eficiencia** para o combate do crime de óbitos por causas externas (homicídios) no período estudado.

## 6.2.2. Estado do Pará, município de Belém.

Em se tratando da análise da média da eficiência total por tamanho da população (eftp), permite-se observar a partir da magnitude média que, o município de **Belém** apresentou uma magnitude média de eficiência por tamanho populacional classificada como de Alta eficiência (1,00) e maior, quando comparada com a magnitude da média dos demais municípios da Amazônia Legal. Importante ressaltar neste contexto, que o ano de 2005, consolidou um total máximo de óbitos por causas externas (homicídios) na ordem de (1255), assim como uma população (1405871) e, por fim, apresentando um escore de eficiência técnica classificado como Alto (1,00) no período analisado.

A Tabela 111 demonstra a evolução descritiva das médias dos indicadores de eficiência total geral (eftg) e eficiência total por tamanho da população (eftp) do município de Belém do Estado do Pará. A partir de comparação empírica descritiva entre as médias, consegue-se perceber que a magnitude da média da eficiência total geral (eftg) estimada para o município de Belém, relacionada com o indicador de enfrentamento ao crime de óbitos por causas externas (homicídio), apresentou-se com classificação **abaixo do menor nível de eficiência (0,00001) e menor** do que a magnitude da média dos demais municípios da Amazônia Legal, conforme (DATASUS, 2018).

Tabela 111: Média da eficiência do município de Belém (PA).

| PIB        |                                                                                                                             | Óbitos Causas                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (R\$ 1,00  | População                                                                                                                   | Externas                                                                                                                                                                                                                 | Eftg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Eftp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| mil)       |                                                                                                                             | (Homicídios)                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8004080,9  | 1322683                                                                                                                     | 1006                                                                                                                                                                                                                     | 9,9E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,0E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 9106087,1  | 1342202                                                                                                                     | 1006                                                                                                                                                                                                                     | 9,9E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,0E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 11024247,4 | 1386482                                                                                                                     | 847                                                                                                                                                                                                                      | 1,2E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,0E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 11514766,0 | 1405871                                                                                                                     | 1255                                                                                                                                                                                                                     | 8,0E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,0E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 13137025,4 | 1428368                                                                                                                     | 907                                                                                                                                                                                                                      | 1,1E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,0E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 14368247,5 | 1408847                                                                                                                     | 859                                                                                                                                                                                                                      | 1,2E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,0E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 15803597,3 | 1424124                                                                                                                     | 1007                                                                                                                                                                                                                     | 9,9E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,0E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 17294868,2 | 1437600                                                                                                                     | 973                                                                                                                                                                                                                      | 1,0E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,0E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 18801039,1 | 1393399                                                                                                                     | 1107                                                                                                                                                                                                                     | 9,0E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,0E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 21426847,1 | 1402056                                                                                                                     | 966                                                                                                                                                                                                                      | 1,0E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,0E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 26362015,2 | 1410430                                                                                                                     | 1048                                                                                                                                                                                                                     | 9,5E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,0E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | (R\$ 1,00 mil)  8004080,9 9106087,1 11024247,4 11514766,0 13137025,4 14368247,5 15803597,3 17294868,2 18801039,1 21426847,1 | (R\$ 1,00 População<br>mil)  8004080,9 1322683 9106087,1 1342202 11024247,4 1386482 11514766,0 1405871 13137025,4 1428368 14368247,5 1408847 15803597,3 1424124 17294868,2 1437600 18801039,1 1393399 21426847,1 1402056 | (R\$ 1,00 mil)       População (Homicídios)         8004080,9       1322683       1006         9106087,1       1342202       1006         11024247,4       1386482       847         11514766,0       1405871       1255         13137025,4       1428368       907         14368247,5       1408847       859         15803597,3       1424124       1007         17294868,2       1437600       973         18801039,1       1393399       1107         21426847,1       1402056       966 | (R\$ 1,00 mil)         População (Homicídios)         Esternas (Homicídios)         Eftg           8004080,9         1322683         1006         9,9E-06           9106087,1         1342202         1006         9,9E-06           11024247,4         1386482         847         1,2E-05           11514766,0         1405871         1255         8,0E-06           13137025,4         1428368         907         1,1E-05           14368247,5         1408847         859         1,2E-05           15803597,3         1424124         1007         9,9E-06           17294868,2         1437600         973         1,0E-05           18801039,1         1393399         1107         9,0E-06           21426847,1         1402056         966         1,0E-05 |

| 2013   | 27139286,2 | 1425922   | 1025 | 9,8E-06  | 1,0E+00 |
|--------|------------|-----------|------|----------|---------|
| 2014   | 28687487,8 | 1432844   | 1065 | 9,4E-06  | 1E+00   |
| 2015   | 29280972,3 | 1439561   | 1011 | 9,9E-06  | 1,0E+00 |
| Média  | 17996469,1 | 1404313,5 | 1006 | 0,00001  | 1       |
| Máximo | 29280972,3 | 1439561   | 1255 | 0,00001  | 1       |
| Mínimo | 8004080,9  | 1322683   | 847  | 0,000007 | 1       |

Elaboração do autor.

A evolução dos valores quantitativos do Produto Interno Bruto (PIB) do município de **Belém**, apresentou-se de forma crescente no decorrer do período, estimando em decorrência disto uma média descritiva no valor de (R\$ 17.996.469, 10). Observando o comportamento desta evolução quantitativa do PIB, percebe-se que no ano de 2015, evidenciou-se o valor máximo do período analisado (R\$ 29.280.972, 30), assim como apresentou um **número expressivo e maior (1011) do que a média** de óbitos por causas externas (homicídios), que na ocasião fora evidenciado um escore de eficiência total geral (eftg) **abaixo do menor nível de classificação de eficiência (9,9E-06)**.

Ao analisar a evolução percentual dos gastos sociais e econômicos relacionada ao total agregado no período, consegue-se perceber que a estimação do escore da eficiência total geral (eftg) está condicionada a um conjunto de interações percentuais entre as variáveis do modelo. Desta forma, fica criterioso informar, que o resultado da média da (eftg), neste contexto analisado, classificou-se **abaixo do menor nível de eficiência** (0,00001) no combate ao crime de óbito por causas externas (homicídios).

Tabela 112: Participação percentual das variáveis - Belém (PA).

| 100010011 |        | Thursday bere |       |            | , 201011 | 1 (1 1 1).  |               |         |
|-----------|--------|---------------|-------|------------|----------|-------------|---------------|---------|
|           | G.A.   | G.            | G.    | G.         | G. S.    | G.          | Total         |         |
| Período   | Social | Educação      | Saúde | Saneamento | Pública  | Urbanização | Agregado (R\$ | Eftg    |
|           | (%)    | (%)           | (%)   | (%)        | (%)      | (%)         | 1,00 mil)     |         |
| 2002      | 3,7    | 20,2          | 45,1  | 6,2        | 1,9      | 22,8        | 436576982,5   | 9,9E-06 |
| 2003      | 4,0    | 20,7          | 45,6  | 4,6        | 1,9      | 23,1        | 514336590,9   | 9,9E-06 |
| 2004      | 4,4    | 17,4          | 44,3  | 3,7        | 1,7      | 28,5        | 637093035,5   | 1,2E-05 |
| 2005      | 3,9    | 18,7          | 48,5  | 3,2        | 2,5      | 23,3        | 616611758,0   | 8,0E-06 |
| 2006      | 4,3    | 18,3          | 45,8  | 4,3        | 3,6      | 23,8        | 786050169,0   | 1,1E-05 |
| 2007      | 4,4    | 18,4          | 44,2  | 4,0        | 3,4      | 25,6        | 898431683,0   | 1,2E-05 |
| 2008      | 4,3    | 18,1          | 42,4  | 3,5        | 3,6      | 28,1        | 1019718287,0  | 9,9E-06 |
| 2009      | 3,8    | 19,3          | 44,5  | 2,8        | 2,7      | 27,0        | 1122567382,0  | 1,0E-05 |
| 2010      | 4,1    | 19,2          | 45,9  | 2,2        | 2,6      | 25,9        | 1144633896,0  | 9,0E-06 |
| 2011      | 3,8    | 19,9          | 39,8  | 2,2        | 3,0      | 31,4        | 1360443914,0  | 1,0E-05 |
| 2012      | 3,6    | 22,3          | 36,9  | 3,5        | 3,3      | 30,4        | 1615503922,0  | 9,5E-06 |
| 2013      | 3,3    | 24,5          | 40,1  | 3,4        | 4,5      | 24,3        | 1612782555,6  | 9,8E-06 |
| 2014      | 3,4    | 21,6          | 49,4  | 15,7       | 4,1      | 5,9         | 1808134800,0  | 9,4E-06 |
| 2015      | 3,7    | 22,8          | 48,2  | 14,4       | 4,9      | 6,0         | 2033596043,9  | 9,9E-06 |
| Média     | 3,9    | 20,1          | 44,3  | 5,3        | 3,1      | 23,3        | 1114748644,2  | 0,00001 |
|           |        |               |       |            |          |             |               |         |

| Máximo | 4,4 | 24,5 | 49,4 | 15,7 | 4,9 | 31,4 | 2033596043,9 | 0,00001  |
|--------|-----|------|------|------|-----|------|--------------|----------|
| Mínimo | 3,3 | 17,4 | 36,9 | 2,2  | 1.7 | 5,9  | 436576982,5  | 0.000007 |

Elaboração do autor.

Por sua vez, a partir da leitura da Tabela 112, constata-se a evolução descritiva das magnitudes das médias percentuais de gastos sociais e econômicos do município de **Belém**, dentre tais, destacam-se os seguintes gastos: **gastos com saúde** (44,3%), **gastos com urbanização** (23,3%) e gastos com educação (20,1%). Neste contexto, podemos inserir na análise as contribuições empíricas de Glaeser e Sacerdote (1999), as quais se propuseram a investigar o efeito da urbanização das cidades na formação das taxas de crimes os níveis de crime, assim como procuraram responder que o porquê que os níveis de crimes nas cidades urbanizadas são mais elevados, por sua vez levando a inferir que parcela da eficiência no combate ao crime de óbitos por causas externas (homicídio) pode ser explicada por níveis de gastos em urbanização.

Posteriormente, outros gastos médios menos expressivos no periodo analisado foram estimados, dentre tais: gastos com saneamento (5,3%), gastos com assistência social (3,9%) e gastos com segurança pública (3,1%). Observa-se, neste contexto, a pouca expressividade, essencialmente, na média de gastos com segurança pública no município de Belém associado a isto o valor dos escores de eficiência obtidos com o resultado, que se demonstrou abaixo da menor classificação de escore de eficiencia para o combate do crime de óbitos por causas externas (homicídios) no período estudado.

#### 6.2.3. Estado do Amazonas, município de Manaus.

Em relação a análise da média da eficiência total por tamanho da população (eftp), permite-se observar a partir da magnitude média que, o município de **Manaus** apresentou uma magnitude média de eficiência por tamanho populacional classificada como de Alta eficiência (1,00) e maior, quando comparada com a magnitude da média dos demais municípios da Amazônia Legal. Importante ressaltar neste contexto, que o ano de 2015, consolidou um total máximo de óbitos por causas externas (homicídios) na ordem de (1977), assim como uma população de (2057711) e, por fim, apresentando um escore de eficiência técnica classificado como Alto (1,00) no período analisado.

A Tabela 113 demonstra a evolução descritiva das médias dos indicadores de eficiência total geral (eftg) e eficiência total por tamanho da população (eftp) do município de Manaus do Estado do Amazonas. A partir de comparação empírica descritiva entre as médias, consegue-se perceber que a magnitude da média da eficiência total geral (eftg) estimada para o município de Manaus, relacionada com o indicador de enfrentamento ao crime de óbitos por causas externas (homicídio), apresentou-se com classificação abaixo do menor nível de eficiência (0,0000076) e menor do que a magnitude da média dos demais municípios da Amazônia Legal, conforme (DATASUS, 2018).

Tabela 113: Média da eficiência do município de Manaus (AM).

|         | Tabela 113. Media da eficiencia do municipio de Manaus (AM). |             |                              |           |         |  |  |  |  |
|---------|--------------------------------------------------------------|-------------|------------------------------|-----------|---------|--|--|--|--|
| Período | PIB<br>(R\$ 1,00 mil)                                        | População   | Obitos<br>Causas<br>Externas | Eftg      | Eftp    |  |  |  |  |
|         |                                                              |             | (Homicídios)                 |           |         |  |  |  |  |
| 2002    | 17756162,9                                                   | 1488805     | 913                          | 1,1E-05   | 1,0E+00 |  |  |  |  |
| 2003    | 21120203,1                                                   | 1527314     | 984                          | 1,0E-05   | 1,0E+00 |  |  |  |  |
| 2004    | 25723022,8                                                   | 1592555     | 1053                         | 9,5E-06   | 1,0E+00 |  |  |  |  |
| 2005    | 28001494,4                                                   | 1644690     | 1054                         | 9,5E-06   | 1,0E+00 |  |  |  |  |
| 2006    | 32770014,9                                                   | 1688524     | 1175                         | 8,5E-06   | 1,0E+00 |  |  |  |  |
| 2007    | 36053012,3                                                   | 1646602     | 1130                         | 8,8E-06   | 1,0E+00 |  |  |  |  |
| 2008    | 39691574,4                                                   | 1709010     | 1274                         | 7,8E-06   | 1,0E+00 |  |  |  |  |
| 2009    | 42070173,1                                                   | 1738641     | 1314                         | 7,6E-06   | 1,0E+00 |  |  |  |  |
| 2010    | 50168821,2                                                   | 1802014     | 1546                         | 6,5E-06   | 1,0E+00 |  |  |  |  |
| 2011    | 55528640,1                                                   | 1832423     | 1730                         | 5,8E-06   | 1,0E+00 |  |  |  |  |
| 2012    | 55551837,6                                                   | 1861838     | 1823                         | 5,5E-06   | 1,0E+00 |  |  |  |  |
| 2013    | 63829864,3                                                   | 1982177     | 1663                         | 6,0E-06   | 1,0E+00 |  |  |  |  |
| 2014    | 67418893,7                                                   | 2020301     | 1734                         | 5,8E-06   | 1,0E+00 |  |  |  |  |
| 2015    | 67066845,5                                                   | 2057711     | 1977                         | 5,1E-06   | 1,0E+00 |  |  |  |  |
| Média   | 43053611,5                                                   | 1756614,643 | 1384                         | 0,0000076 | 1       |  |  |  |  |
| Máximo  | 67418893,7                                                   | 2057711     | 1977                         | 0,000010  | 1       |  |  |  |  |
| Mínimo  | 17756162,9                                                   | 1488805     | 913                          | 0,0000050 | 1       |  |  |  |  |

Fonte: DATASUS, IBGE e FINBRA (2018).

Elaboração do autor.

A evolução dos valores quantitativos do Produto Interno Bruto (PIB) do município de Manaus, apresentou-se de forma crescente no decorrer do período, estimando em decorrência disto uma média descritiva no valor de (R\$ 43.053.611,50). Observando o comportamento desta evolução quantitativa do PIB, percebe-se que no ano de 2014, evidenciou-se o valor máximo do período analisado (R\$ 67.418.893, 70), assim como apresentou um número expressivo e maior (1734) do que a média de óbitos por causas externas (homicídios), que na ocasião fora evidenciado um escore de eficiência total geral (eftg) abaixo do menor do nível de classificação de eficiência (5,8E-06).

Ao analisar a evolução percentual dos gastos sociais e econômicos relacionada ao total agregado no período, consegue-se perceber que a estimação do escore da eficiência total geral (eftg) está condicionada a um conjunto de interações percentuais entre as variáveis do modelo. Desta forma, fica criterioso informar, que o resultado da média da (eftg), neste contexto analisado, classificou-se **abaixo do menor nível de eficiência** (0,0000076) no combate ao crime de óbito por causas externas (homicídios).

Tabela 114: Participação percentual das variáveis - Manaus (AM).

| •       | G.A.   | G.       | G.    | G.         | G. S.   | G.          | Total         |           |
|---------|--------|----------|-------|------------|---------|-------------|---------------|-----------|
| Período | Social | Educação | Saúde | Saneamento | Pública | Urbanização | Agregado (R\$ | Eftg      |
|         | (%)    | (%)      | (%)   | (%)        | (%)     | (%)         | 1,00 mil)     |           |
| 2002    | 6,1    | 38,4     | 24,6  | 1,8        | 1,2     | 28,0        | 541889745,8   | 1,1E-05   |
| 2003    | 7,0    | 35,9     | 26,6  | 1,7        | 1,2     | 27,7        | 590751513,6   | 1,0E-05   |
| 2004    | 4,6    | 38,6     | 28,2  | 2,2        | 1,2     | 25,1        | 669235924,2   | 9,5E-06   |
| 2005    | 7,7    | 41,4     | 29,4  | 1,2        | 1,6     | 18,7        | 594232783,6   | 9,5E-06   |
| 2006    | 5,2    | 35,3     | 26,9  | 0,1        | 1,2     | 31,2        | 1015307818,2  | 8,5E-06   |
| 2007    | 3,0    | 35,2     | 26,4  | 0,0        | 1,2     | 34,2        | 1144400323,1  | 8,8E-06   |
| 2008    | 2,3    | 35,4     | 24,2  | 0,5        | 1,2     | 36,4        | 1433924467,3  | 7,8E-06   |
| 2009    | 1,9    | 34,1     | 28,1  | 0,2        | 1,0     | 34,6        | 1457596866,4  | 7,6E-06   |
| 2010    | 4,1    | 35,2     | 26,5  | 0,5        | 1,0     | 32,7        | 1725397738,4  | 6,5E-06   |
| 2011    | 4,6    | 32,8     | 25,1  | 1,0        | 0,8     | 35,6        | 2041991866,8  | 5,8E-06   |
| 2012    | 4,6    | 35,6     | 27,2  | 0,9        | 0,6     | 31,1        | 2211181849,3  | 5,5E-06   |
| 2013    | 3,8    | 37,6     | 27,4  | 0,7        | 0,2     | 30,2        | 2454386507,1  | 6,0E-06   |
| 2014    | 3,6    | 39,2     | 25,7  | 0,5        | 0,1     | 31,0        | 2730139182,2  | 5,8E-06   |
| 2015    | 3,4    | 36,6     | 25,8  | 1,6        | 0,9     | 31,7        | 2907549330,4  | 5,1E-06   |
| Média   | 4,4    | 36,5     | 26,6  | 0,9        | 1,0     | 30,6        | 1536998994,0  | 0,0000076 |
| Máximo  | 7,7    | 41,4     | 29,4  | 2,2        | 1,6     | 36,4        | 2907549330,4  | 0,000010  |
| Mínimo  | 1,9    | 32,8     | 24,2  | 0,0        | 0,1     | 18,7        | 541889745,8   | 0,0000050 |

Fonte: DATASUS, IBGE e FINBRA (2018).

Elaboração do autor.

Por sua vez, a partir da leitura da Tabela 114, constata-se a evolução descritiva das magnitudes das médias percentuais de gastos sociais e econômicos do município de Manaus, dentre tais, destacam-se os seguintes gastos: gastos com educação (36,5%), gastos com urbanização (30,6%) e gastos com saúde (26,6%). Neste contexto, podemos inserir na análise as contribuições empíricas de Glaeser e Sacerdote (1999), as quais se propuseram a investigar o efeito da urbanização das cidades na formação das taxas de crimes os níveis de crime, assim como procuraram responder que o porquê que os níveis de crimes nas cidades urbanizadas são mais elevados, por sua vez levando a inferir que parcela da eficiência no combate ao crime de óbitos por causas externas (homicídio) pode ser explicada por níveis de gastos em urbanização.

Posteriormente, outros gastos médios menos expressivos no periodo analisado foram estimados, dentre tais: gastos com assistência social (4,4%), gastos com segurança pública (1,0%) e gastos com saneamento (0,9%). Observa-se, neste contexto, a pouca expressividade, essencialmente, na média de gastos com segurança pública no município de Manaus, associado a isto o valor dos escores de eficiência obtidos com o resultado, que se demonstrou abaixo da menor classificação de escore de eficiencia para o combate do crime de óbitos por causas externas (homicídios) no período estudado.

## 6.2.4. Estado do Amapá, município de Macapá.

No que diz respeito, a análise da média da eficiência total por tamanho da população (eftp), permite-se observar a partir da magnitude média que, o município de **Macapá** apresentou uma magnitude média de eficiência por tamanho populacional classificada como de Alta eficiência (0,99) e maior, quando comparada com a magnitude da média dos demais municípios da Amazônia Legal. Importante ressaltar neste contexto, que o ano de 2015, consolidou um total máximo de óbitos por causas externas (homicídios) na ordem de (385), assim como uma população de (456171) e, por fim, apresentando um escore de eficiência técnica classificado como **Alto** (0,94) no período analisado.

A Tabela 115 demonstra a evolução descritiva das médias dos indicadores de eficiência total geral (eftg) e eficiência total por tamanho da população (eftp) do município de **Macapá** do Estado do Amapá. A partir de comparação empírica descritiva entre as médias, consegue-se perceber que a magnitude da média da eficiência total geral (eftg) estimada para o município de **Macapá**, relacionada com o indicador de enfrentamento ao crime de óbitos por causas externas (homicídio), apresentou-se com classificação **abaixo do menor nível de eficiência (0,000031) e menor** do que a magnitude da média dos demais municípios da Amazônia Legal, conforme (DATASUS, 2018).

Tabela 115: Média da eficiência do município de Macapá (AP).

| Período | PIB<br>(R\$ 1,00 mil) | População | Óbitos<br>Causas<br>Externas<br>(Homicídios) | Eftg    | Eftp    |
|---------|-----------------------|-----------|----------------------------------------------|---------|---------|
| 2002    | 2171527,0             | 306583    | 334                                          | 3,0E-05 | 1,0E+00 |
| 2003    | 2303403,7             | 318761    | 305                                          | 3,3E-05 | 1,0E+00 |
| 2004    | 2628385,7             | 326466    | 295                                          | 3,4E-05 | 1,0E+00 |
| 2005    | 2876944,1             | 355408    | 297                                          | 3,4E-05 | 1,0E+00 |

| 2006   | 3604033,7 | 368367 | 294 | 3,4E-05  | 1,0E+00 |
|--------|-----------|--------|-----|----------|---------|
| 2007   | 4020786,3 | 344153 | 275 | 3,6E-05  | 1,0E+00 |
| 2008   | 4711508,0 | 359020 | 287 | 3,5E-05  | 1,0E+00 |
| 2009   | 5072908,3 | 366484 | 266 | 3,8E-05  | 1,0E+00 |
| 2010   | 5503896,4 | 398204 | 355 | 2,8E-05  | 1,0E+00 |
| 2011   | 6196918,4 | 407023 | 323 | 3,1E-05  | 1,0E+00 |
| 2012   | 7450350,9 | 415554 | 360 | 2,8E-05  | 1,0E+00 |
| 2013   | 8279310,1 | 437256 | 355 | 2,8E-05  | 1,0E+00 |
| 2014   | 8882333,3 | 446757 | 358 | 2,8E-05  | 9,9E-01 |
| 2015   | 9085050,2 | 456171 | 385 | 2,6E-05  | 9,4E-01 |
| Média  | 5199096,9 | 379015 | 321 | 0,000031 | 0,99    |
| Máximo | 9085050,2 | 456171 | 385 | 0,000037 | 1       |
| Mínimo | 2171527,0 | 306583 | 266 | 0,000025 | 0,94    |

Elaboração do autor.

A evolução dos valores quantitativos do Produto Interno Bruto (PIB) do município de Macapá, apresentou-se de forma crescente no decorrer do período, estimando em decorrência disto uma média descritiva no valor de (R\$ 5.199.096, 90). Observando o comportamento desta evolução quantitativa do PIB, percebe-se que no ano de 2015, evidenciou-se o valor máximo do período analisado (R\$ 9.085.050, 20), assim como apresentou um número expressivo e maior (385) do que a média de óbitos por causas externas (homicídios), que na ocasião fora evidenciado um escore de eficiência total geral (eftg) abaixo do menor nível de classificação de eficiência (2,6E-05).

Ao analisar a evolução percentual dos gastos sociais e econômicos relacionada ao total agregado no período, consegue-se perceber que a estimação do escore da eficiência total geral (eftg) está condicionada a um conjunto de interações percentuais entre as variáveis do modelo. Desta forma, fica criterioso informar, que o resultado da média da (eftg), neste contexto analisado, classificou-se **abaixo do menor nível de eficiência** (0,000031) no combate ao crime de óbito por causas externas (homicídios).

Tabela 116: Participação percentual das variáveis - Macapá (AP).

|         | C 4    | C        | <u> </u> | C          | C C   | C    | Total       |         |
|---------|--------|----------|----------|------------|-------|------|-------------|---------|
| D / 1   | G.A.   | G.       | G.       | G.         | G. S. | G.   | Agregado    | TD C:   |
| Período | Social | Educação |          | Saneamento |       | ,    | (R\$ 1,00   | Eftg    |
|         | (%)    | (%)      | (%)      | (%)        | (%)   | (%)  | mil)        |         |
| 2002    | 2,8    | 32,2     | 25,6     | 6,8        | 2,8   | 29,8 | 90036521,3  | 3,0E-05 |
| 2003    | 3,4    | 36,8     | 31,5     | 3,4        | 5,2   | 19,7 | 84641080,0  | 3,3E-05 |
| 2004    | 3,5    | 34,5     | 31,2     | 2,3        | 5,2   | 23,3 | 100967312,3 | 3,4E-05 |
| 2005    | 4,4    | 39,8     | 33,9     | 0,8        | 6,0   | 15,2 | 101820429,1 | 3,4E-05 |
| 2006    | 3,7    | 39,2     | 32,5     | 1,0        | 5,0   | 18,6 | 133818536,0 | 3,4E-05 |
| 2007    | 3,2    | 39,9     | 30,0     | 0,4        | 5,1   | 21,4 | 149221419,5 | 3,6E-05 |
| 2008    | 3,1    | 40,5     | 35,1     | 1,4        | 4,8   | 15,0 | 196968176,0 | 3,5E-05 |

| 2009   | 3,8 | 39,4 | 34,9 | 1,2 | 5,7 | 15,0 | 204357665,2 | 3,8E-05  |
|--------|-----|------|------|-----|-----|------|-------------|----------|
| 2010   | 3,3 | 44,5 | 39,7 | 0,6 | 6,3 | 5,6  | 216874885,8 | 2,8E-05  |
| 2011   | 2,6 | 48,0 | 38,3 | 0,1 | 5,8 | 5,1  | 246211950,3 | 3,1E-05  |
| 2012   | 2,3 | 48,6 | 34,2 | 0,1 | 7,7 | 7,0  | 290263209,4 | 2,8E-05  |
| 2013   | 2,2 | 52,8 | 30,1 | 0,1 | 8,6 | 6,3  | 308087873,2 | 2,8E-05  |
| 2014   | 2,4 | 45,8 | 30,8 | 0,0 | 8,1 | 12,9 | 337663403,9 | 2,8E-05  |
| 2015   | 2,3 | 48,3 | 31,8 | 0,0 | 7,4 | 10,2 | 427274217,0 | 2,6E-05  |
| Média  | 3,1 | 42,2 | 32,8 | 1,3 | 6,0 | 14,6 | 206300477,1 | 0,000031 |
| Máximo | 4,4 | 52,8 | 39,7 | 6,8 | 8,6 | 29,8 | 427274217,0 | 0,000037 |
| Mínimo | 2,2 | 32,2 | 25,6 | 0,0 | 2,8 | 5,1  | 84641080,0  | 0,000025 |

Elaboração do autor.

Por sua vez, a partir da leitura da Tabela 116, constata-se a evolução descritiva das magnitudes das médias percentuais de gastos sociais e econômicos do município de Macapá, dentre tais, destacam-se os seguintes gastos: gastos com educação (42,2%), gastos com saúde (32,8%) e gastos com urbanização (14,6%). Neste contexto, podemos inserir na análise as contribuições empíricas de Glaeser e Sacerdote (1999), as quais se propuseram a investigar o efeito da urbanização das cidades na formação das taxas de crimes os níveis de crime, assim como procuraram responder que o porquê que os níveis de crimes nas cidades urbanizadas são mais elevados, por sua vez levando a inferir que parcela da eficiência no combate ao crime de óbitos por causas externas (homicídio) pode ser explicada por níveis de gastos em urbanização.

Posteriormente, outros gastos médios menos expressivos no periodo analisado foram estimados, dentre tais: gastos com segurança pública (6,0%), gastos com assistência social (3,1%) e gastos com saneamento (1,3%). Observa-se, neste contexto, a pouca expressividade, essencialmente, na média de gastos com segurança pública no município de Macapá, associado a isto o valor dos escores de eficiência obtidos com o resultado, que se demonstrou abaixo da menor classificação de escore de eficiencia para o combate do crime de óbitos por causas externas (homicídios) no período estudado.

#### 6.2.5. Estado de Roraima, município de Boa Vista.

Em se tratando da análise da média da eficiência total por tamanho da população (eftp), permite-se observar a partir da magnitude média que, o município de **Boa Vista** apresentou uma magnitude média de eficiência por tamanho populacional classificada como de **Média eficiência (0,55) e menor,** quando comparada com a magnitude da média dos demais municípios da Amazônia Legal. Importante ressaltar neste contexto, que o ano de

2013, consolidou um total máximo de óbitos por causas externas (homicídios) na ordem de (331), assim como uma população de (308996) e, por fim, apresentando um escore de eficiência técnica classificado como **Regular** (0,43) no período analisado.

A Tabela 117 demonstra a evolução descritiva das médias dos indicadores de eficiência total geral (eftg) e eficiência total por tamanho da população (eftp) do município de **Boa Vista** do Estado de Roraima. A partir de comparação empírica descritiva entre as médias, consegue-se perceber que a magnitude da média da eficiência total geral (eftg) estimada para o município de **Boa Vista**, relacionada com o indicador de enfrentamento ao crime de óbitos por causas externas (homicídio), apresentou-se com classificação **abaixo do menor nível de eficiência (0,000043) e menor** do que a magnitude da média dos demais municípios da Amazônia Legal, conforme (DATASUS, 2018).

Tabela 117: Média da eficiência do município de Boa Vista (RR).

|         | ieuia ua efficiencia | do municipio |                  | (IXIX).  |          |
|---------|----------------------|--------------|------------------|----------|----------|
|         | PIB                  |              | Óbitos<br>Causas |          |          |
| Período | (R\$ 1,00 mil)       | População    | Externas         | Eftg     | Eftp     |
|         |                      |              | (Homicídios)     |          |          |
| 2002    | 1821017,7            | 214541       | 238              | 4,20E-05 | 5,62E-01 |
| 2003    | 1966959,0            | 221027       | 195              | 5,13E-05 | 8,89E-01 |
| 2004    | 2112631,9            | 236319       | 207              | 4,83E-05 | 7,78E-01 |
| 2005    | 2392603,7            | 242179       | 175              | 5,71E-05 | 4,23E-01 |
| 2006    | 2902139,2            | 249655       | 193              | 5,18E-05 | 5,65E-01 |
| 2007    | 3187974,6            | 249853       | 229              | 4,37E-05 | 8,35E-01 |
| 2008    | 3671265,1            | 260930       | 212              | 4,72E-05 | 4,87E-01 |
| 2009    | 4338035,7            | 266901       | 217              | 4,61E-05 | 3,63E-01 |
| 2010    | 5123255,7            | 284313       | 237              | 4,22E-05 | 4,04E-01 |
| 2011    | 5539888,0            | 290741       | 226              | 4,42E-05 | 3,57E-01 |
| 2012    | 5835746,2            | 296959       | 237              | 4,22E-05 | 5,84E-01 |
| 2013    | 6705376,8            | 308996       | 331              | 3,02E-05 | 4,32E-01 |
| 2014    | 7353244,6            | 314900       | 275              | 3,64E-05 | 5,61E-01 |
| 2015    | 7559300,5            | 320714       | 309              | 3,24E-05 | 4,97E-01 |
| Média   | 4322102,8            | 268431       | 234              | 0,000043 | 0,55     |
| Máximo  | 7559300,5            | 320714       | 331              | 0,000057 | 0,89     |
| Mínimo  | 1821017,7            | 214541       | 175              | 0,000030 | 0,36     |

Fonte: DATASUS, IBGE e FINBRA (2018).

Elaboração do autor.

A evolução dos valores quantitativos do Produto Interno Bruto (PIB) do município de **Boa Vista**, apresentou-se de forma crescente no decorrer do período, estimando em decorrência disto uma média descritiva no valor de (R\$ 4.322.102,80). Observando o comportamento desta evolução quantitativa do PIB, percebe-se que no ano de 2015,

evidenciou-se o valor máximo do período analisado (R\$ 7.559.300, 50), assim como apresentou um número expressivo e maior (309) do que a média de óbitos por causas externas (homicídios) (238), que na ocasião fora evidenciado um escore de eficiência total geral (eftg) abaixo do menor nível de classificação de eficiência (3,24E-05).

Ao analisar a evolução percentual dos gastos sociais e econômicos relacionada ao total agregado no período, consegue-se perceber que a estimação do escore da eficiência total geral (eftg) está condicionada a um conjunto de interações percentuais entre as variáveis do modelo. Desta forma, fica criterioso informar, que o resultado da média da (eftg), neste contexto analisado, classificou-se **abaixo do menor nível de eficiência** (0,000043) no combate ao crime de óbito por causas externas (homicídios).

Tabela 118: Participação percentual das variáveis - Boa Vista (RR).

|         | G.A.       | G.       | G.    | G.         | G. S.   | G.          | Total             |          |
|---------|------------|----------|-------|------------|---------|-------------|-------------------|----------|
| Período | Social     | Educação | Saúde | Saneamento | Pública | Urbanização | Agregado          | Eftg     |
|         | (%)        | (%)      | (%)   | (%)        | (%)     | (%)         | (R\$ 1,00<br>mil) |          |
| 2002    | <i>E C</i> | 16.0     | 21.0  | 2.7        | 0.5     | 52.0        |                   | 4.20E.05 |
| 2002    | 5,6        | 16,0     | 21,0  | 3,7        | 0,5     | 53,2        | 144292587,9       |          |
| 2003    | 6,0        | 25,8     | 39,2  | 0,3        | 0,1     | 28,6        | 110020712,6       | 5,13E-05 |
| 2004    | 5,2        | 25,9     | 35,9  | 1,8        | 0,5     | 30,7        | 111425000,0       | 4,83E-05 |
| 2005    | 5,6        | 18,8     | 34,6  | 0,5        | 0,1     | 40,4        | 151551868,3       | 5,71E-05 |
| 2006    | 4,2        | 23,5     | 33,8  | 0,7        | 0,1     | 37,7        | 168811000,0       | 5,18E-05 |
| 2007    | 4,6        | 27,0     | 37,2  | 0,8        | 0,2     | 30,1        | 213618000,0       | 4,37E-05 |
| 2008    | 3,2        | 24,7     | 29,3  | 2,8        | 0,2     | 39,8        | 279621023,3       | 4,72E-05 |
| 2009    | 3,0        | 28,7     | 35,4  | 2,4        | 0,1     | 30,3        | 298379380,6       | 4,61E-05 |
| 2010    | 1,9        | 32,6     | 26,5  | 14,0       | 0,1     | 24,8        | 421710702,3       | 4,22E-05 |
| 2011    | 2,0        | 39,5     | 30,2  | 1,9        | 0,1     | 26,3        | 297104846,0       | 4,42E-05 |
| 2012    | 4,1        | 32,3     | 30,9  | 12,0       | 0,1     | 20,5        | 341008865,3       | 4,22E-05 |
| 2013    | 3,4        | 38,8     | 31,8  | 0,8        | 0,4     | 24,8        | 422282677,3       | 3,02E-05 |
| 2014    | 5,5        | 32,5     | 20,4  | 10,5       | 3,9     | 27,3        | 663243544,6       | 3,64E-05 |
| 2015    | 5,5        | 32,2     | 21,1  | 0,6        | 4,0     | 36,6        | 717359799,7       | 3,24E-05 |
| Média   | 4,3        | 28,5     | 30,5  | 3,8        | 0,7     | 32,2        | 310030714,8       | 0,000043 |
| Máximo  | 6,0        | 39,5     | 39,2  | 14,0       | 4,0     | 53,2        | 717359799,7       | 0,000057 |
| Mínimo  | 1,9        | 16,0     | 20,4  | 0,3        | 0,1     | 20,5        | 110020712,6       | 0,000030 |

Fonte: DATASUS, IBGE e FINBRA (2018).

Elaboração do autor.

Por sua vez, a partir da leitura da Tabela 118, constata-se a evolução descritiva das magnitudes das médias percentuais de gastos sociais e econômicos do município de **Boa Vista**, dentre tais, destacam-se os seguintes gastos: **gastos com urbanização** (32,2%), **gastos com saúde** (30,5%) e **gastos com educação** (28,5%). Neste contexto, podemos inserir na análise as contribuições empíricas de Glaeser e Sacerdote (1999), as quais se propuseram a investigar o efeito da urbanização das cidades na formação das taxas de crimes os níveis de crime, assim como procuraram responder que o porquê que os níveis de crimes

nas cidades urbanizadas são mais elevados, por sua vez levando a inferir que parcela da eficiência no combate ao crime de óbitos por causas externas (homicídio) pode ser explicada por níveis de gastos em urbanização.

Posteriormente, outros gastos médios menos expressivos no periodo analisado foram estimados, dentre tais: gastos com assistência social (4,3%), gastos com saneamento (3,8%) e gastos com segurança pública (0,7%). Observa-se, neste contexto, a pouca expressividade, essencialmente, na média de gastos com segurança pública no município de Boa Vista, associado a isto o valor dos escores de eficiência obtidos com o resultado, que se demonstrou abaixo da menor classificação de escore de eficiencia para o combate do crime de óbitos por causas externas (homicídios) no período estudado.

#### 6.2.6. Estado do Mato Grosso, município de Cuiabá.

A partir da análise da média da eficiência total por tamanho da população (eftp), permite-se observar que o município de **Cuiabá** apresentou uma magnitude média de eficiência por tamanho populacional classificada como de **Alta eficiência (0,81) e maior**, quando comparada com a magnitude da média dos demais municípios da Amazônia Legal. Importante ressaltar neste contexto, que o ano de 2014, consolidou um total máximo de óbitos por causas externas (homicídios) na ordem de (703), assim como uma população de (575480) e, por fim, apresentando um escore de eficiência técnica classificado como **Médio** (0,69) no período analisado.

A Tabela 119 demonstra a evolução descritiva das médias dos indicadores de eficiência total geral (eftg) e eficiência total por tamanho da população (eftp) do município de **Cuiabá** do Estado de Mato Grosso. A partir de comparação empírica descritiva entre as médias, consegue-se perceber que a magnitude da média da eficiência total geral (eftg) estimada para o município de **Cuiabá**, relacionada com o indicador de enfrentamento ao crime de óbitos por causas externas (homicídio), apresentou-se com classificação **abaixo do menor nível de eficiência (0,000016) e menor** do que a magnitude da média dos demais municípios da Amazônia Legal, conforme (DATASUS, 2018).

Tabela 119: Média da eficiência do município de Cuiabá (MT).

| Período | PIB<br>(R\$ 1,00 mil) | População | Óbitos<br>Causas<br>Externas<br>(Homicídios) | Eftg     | Eftp     |
|---------|-----------------------|-----------|----------------------------------------------|----------|----------|
| 2002    | 4202756,2             | 500288    | 652                                          | -        | -        |
| 2003    | 5498641,3             | 508156    | 595                                          | -        | -        |
| 2004    | 6910785,2             | 524666    | 585                                          | -        | -        |
| 2005    | 7531109,9             | 533800    | 585                                          | -        | -        |
| 2006    | 7638873,9             | 542861    | 551                                          | 1,81E-05 | 1,00E+00 |
| 2007    | 8534808,8             | 526830    | 548                                          | 1,82E-05 | 1,00E+00 |
| 2008    | 9915325,9             | 544737    | 631                                          | 1,58E-05 | 9,37E-01 |
| 2009    | 11059165,5            | 550562    | 623                                          | 1,61E-05 | 8,77E-01 |
| 2010    | 12541778,6            | 551098    | 617                                          | 1,62E-05 | 6,68E-01 |
| 2011    | 13440075,1            | 556298    | 666                                          | 1,50E-05 | 6,41E-01 |
| 2012    | 15956714,7            | 561329    | 620                                          | 1,61E-05 | 6,65E-01 |
| 2013    | 17459007,5            | 569830    | 678                                          | 1,47E-05 | 9,70E-01 |
| 2014    | 20512664,8            | 575480    | 703                                          | 1,42E-05 | 6,97E-01 |
| 2015    | 21220587,1            | 580489    | 650                                          | 1,54E-05 | 6,40E-01 |
| Média   | 11601592,5            | 544745    | 622                                          | 0,000016 | 0,81     |
| Máximo  | 21220587,1            | 580489    | 703                                          | 0,000018 | 1,00     |
| Mínimo  | 4202756,2             | 500288    | 548                                          | 0,000014 | 0,64     |

Elaboração do autor.

A evolução dos valores quantitativos do Produto Interno Bruto (PIB) do município de Cuiabá, apresentou-se de forma crescente no decorrer do período, estimando em decorrência disto uma média descritiva no valor de (R\$ 11.601.592, 50). Observando o comportamento desta evolução quantitativa do PIB, percebe-se que no ano de 2015, evidenciou-se o valor máximo do período analisado (R\$ 21.220.587, 10), assim como apresentou um número expressivo e maior (650) do que a média de óbitos por causas externas (homicídios), que na ocasião fora evidenciado um escore de eficiência total geral (eftg) abaixo do menor nível de classificação de eficiência (1,54E-05).

Ao analisar a evolução percentual dos gastos sociais e econômicos relacionada ao total agregado no período, consegue-se perceber que a estimação do escore da eficiência total geral (eftg) está condicionada a um conjunto de interações percentuais entre as variáveis do modelo. Desta forma, fica criterioso informar, que o resultado da média da (eftg), neste contexto analisado, classificou-se **abaixo do menor nível de eficiência** (0,000016) no combate ao crime de óbito por causas externas (homicídios).

Tabela 120: Participação percentual das variáveis - Cuiabá (MT).

| Período | G.A.<br>Social<br>(%) | G.<br>Educação<br>(%) | G.<br>Saúde<br>(%) | G.<br>Saneamento<br>(%) | G. S.<br>Pública<br>(%) | G.<br>Urbanização<br>(%) | Total<br>Agregado<br>(R\$ 1,00 | Eftg     |
|---------|-----------------------|-----------------------|--------------------|-------------------------|-------------------------|--------------------------|--------------------------------|----------|
| 2002    | 1,5                   | 36,4                  | 40,2               | 6,9                     | 0,0                     | 15,0                     | mil) 251393915,0               |          |
| 2002    | 2,4                   | 30,4                  | 43,3               | 6,4                     | 0,0                     | 17,8                     | 258456498,1                    | -        |
|         |                       | ·                     |                    | · ·                     | •                       |                          | *                              | -        |
| 2004    | 1,8                   | 28,0                  | 44,2               | 5,2                     | 0,0                     | 20,9                     | 307989059,6                    | -        |
| 2005    | 2,4                   | 30,7                  | 46,5               | 4,7                     | 0,0                     | 15,7                     | 325799723,3                    | -        |
| 2006    | 3,0                   | 26,8                  | 42,7               | 3,7                     | 0,0                     | 23,7                     | 387933471,3                    | 1,81E-05 |
| 2007    | 2,8                   | 28,1                  | 44,5               | 3,3                     | 0,0                     | 21,4                     | 421314252,6                    | 1,82E-05 |
| 2008    | 2,4                   | 25,9                  | 46,9               | 2,6                     | 0,0                     | 22,1                     | 499209547,2                    | 1,58E-05 |
| 2009    | 4,0                   | 27,7                  | 50,4               | 1,4                     | 0,0                     | 16,5                     | 549757849,0                    | 1,61E-05 |
| 2010    | 3,2                   | 36,5                  | 36,1               | 0,4                     | 0,0                     | 23,8                     | 453440172,7                    | 1,62E-05 |
| 2011    | 3,1                   | 31,0                  | 48,2               | 0,2                     | 0,1                     | 17,6                     | 727826579,8                    | 1,50E-05 |
| 2012    | 3,5                   | 30,0                  | 39,5               | 0,1                     | 0,1                     | 26,8                     | 927802700,2                    | 1,61E-05 |
| 2013    | 3,9                   | 33,3                  | 48,3               | 0,2                     | 0,2                     | 14,2                     | 873129284,6                    | 1,47E-05 |
| 2014    | 4,4                   | 31,3                  | 47,1               | 0,2                     | 0,2                     | 16,8                     | 998441998,3                    | 1,42E-05 |
| 2015    | 3,8                   | 28,8                  | 49,0               | 0,1                     | 0,2                     | 18,1                     | 1123446248,7                   | 1,54E-05 |
| Média   | 3,0                   | 30,3                  | 44,8               | 2,5                     | 0,1                     | 19,3                     | 578995807,2                    | 0,000016 |
| Máximo  | 4,4                   | 36,5                  | 50,4               | 6,9                     | 0,2                     | 26,8                     | 1123446248,7                   | 0,000018 |
| Mínimo  | 1,5                   | 25,9                  | 36,1               | 0,1                     | 0,0                     | 14,2                     | 251393915,0                    | 0,000014 |

Elaboração do autor.

Por sua vez, a partir da leitura da Tabela 120, constata-se a evolução descritiva das magnitudes das médias percentuais de gastos sociais e econômicos do município de **Cuiabá**, dentre tais, destacam-se os seguintes gastos: **gastos com saúde** (44,8%), **gastos com educação** (30,3%) e gastos com urbanização (19,3%). Neste contexto, podemos inserir na análise as contribuições empíricas de Glaeser e Sacerdote (1999), as quais se propuseram a investigar o efeito da urbanização das cidades na formação das taxas de crimes os níveis de crime, assim como procuraram responder que o porquê que os níveis de crimes nas cidades urbanizadas são mais elevados, por sua vez levando a inferir que parcela da eficiência no combate ao crime de óbitos por causas externas (homicídio) pode ser explicada por níveis de gastos em urbanização.

Posteriormente, outros gastos médios menos expressivos no periodo analisado foram estimados, dentre tais: gastos com assistência social (3,0%), gastos com saneamento (2,5%) e gastos com segurança pública (0,1%). Observa-se, neste contexto, a pouca expressividade, essencialmente, na média de gastos com segurança pública no município de Boa Vista, associado a isto o valor dos escores de eficiência obtidos com o resultado, que se demonstrou abaixo da menor classificação de escore de eficiência para o combate do crime de óbitos por causas externas (homicídios) no período estudado.

### 6.2.7. Estado de Tocantins, município de Palmas.

No que diz respeito, a análise da média da eficiência total por tamanho da população (eftp), permite-se observar a partir da magnitude média que, o município de **Palmas** apresentou uma magnitude média de eficiência por tamanho populacional classificada como de **Alta eficiência** (**0,76**) **e maior**, quando comparada com a magnitude da média dos demais municípios da Amazônia Legal. Importante ressaltar neste contexto, que o ano de 2015, consolidou um total máximo de óbitos por causas externas (homicídios) na ordem de (322), assim como uma população de (272726) e, por fim, apresentando um escore de eficiência técnica classificado como **Médio** (0,56) no período analisado.

A Tabela 121 demonstra a evolução descritiva das médias dos indicadores de eficiência total geral (eftg) e eficiência total por tamanho da população (eftp) do município de **Palmas** do Estado de Tocantins. A partir de comparação empírica descritiva entre as médias, consegue-se perceber que a magnitude da média da eficiência total geral (eftg) estimada para o município de **Palmas**, relacionada com o indicador de enfrentamento ao crime de óbitos por causas externas (homicídio), apresentou-se com classificação **abaixo do menor nível de eficiência (0,000039) e menor** do que a magnitude da média dos demais municípios da Amazônia Legal, conforme (DATASUS, 2018).

Tabela 121: Média da eficiência do município de Palmas (TO).

|         |                | •         | Óbitos       | ,        |         |  |
|---------|----------------|-----------|--------------|----------|---------|--|
| Período | PIB            | População | Causas       | Eftg     | Eftp    |  |
|         | (R\$ 1,00 mil) | 1 ,       | Externas     | C        | 1       |  |
|         |                |           | (Homicídios) |          |         |  |
| 2002    | 1303584,9      | 161137    | 147          | -        | -       |  |
| 2003    | 1401497,1      | 172176    | 158          | -        | -       |  |
| 2004    | 1511957,6      | 187639    | 141          | -        | -       |  |
| 2005    | 1721828,3      | 208165    | 141          | -        | -       |  |
| 2006    | 2036252,4      | 220889    | 148          | -        | -       |  |
| 2007    | 2336093,1      | 178386    | 196          | -        | -       |  |
| 2008    | 2770087,3      | 184010    | 178          | -        | -       |  |
| 2009    | 3149044,9      | 188645    | 218          | 4,6E-05  | 9,2E-01 |  |
| 2010    | 4102952,3      | 228332    | 250          | 4,0E-05  | 9,1E-01 |  |
| 2011    | 4407183,6      | 235315    | 254          | 3,9E-05  | 6,7E-01 |  |
| 2012    | 4886729,4      | 242070    | 229          | 4,4E-05  | 9,0E-01 |  |
| 2013    | 5794789,2      | 257904    | 254          | 3,9E-05  | 7,5E-01 |  |
| 2014    | 6593223,7      | 265409    | 284          | 3,5E-05  | 6,5E-01 |  |
| 2015    | 7400435,9      | 272726    | 322          | 3,1E-05  | 5,6E-01 |  |
| Média   | 3529690,0      | 214486    | 209          | 0,000039 | 0,76    |  |
| Máximo  | 7400435,9      | 272726    | 322          | 0,000045 | 0,92    |  |

Mínimo 1303584,9 161137 141 0,000031 0,56

Fonte: DATASUS, IBGE e FINBRA (2018).

Elaboração do autor.

A evolução dos valores quantitativos do Produto Interno Bruto (PIB) do município de **Palmas**, apresentou-se de forma crescente no decorrer do período, estimando em decorrência disto uma média descritiva no valor de (R\$ 3.529.690, 00). Observando o comportamento desta evolução quantitativa do PIB, percebe-se que no ano de 2015, evidenciou-se o valor máximo do período analisado (R\$ 7.400.435, 90), assim como apresentou um **número expressivo e maior (322)** de óbitos por causas externas (homicídios), que na ocasião fora evidenciado um escore de eficiência total geral (eftg) **abaixo do menor nível de classificação de eficiência (3,1E-05)**.

Ao analisar a evolução percentual dos gastos sociais e econômicos relacionada ao total agregado no período, consegue-se perceber que a estimação do escore da eficiência total geral (eftg) está condicionada a um conjunto de interações percentuais entre as variáveis do modelo. Desta forma, fica criterioso informar, que o resultado da média da (eftg), neste contexto analisado, classificou-se **abaixo do menor nível de eficiência** (0,000039) no combate ao crime de óbito por causas externas (homicídios).

Tabela 122: Participação percentual das variáveis - Palmas (TO).

|         | Tabela 122. Participação percentual das variaveis - Palinas (10). |                       |                    |                         |                         |                          |                                        |          |
|---------|-------------------------------------------------------------------|-----------------------|--------------------|-------------------------|-------------------------|--------------------------|----------------------------------------|----------|
| Período | G.A.<br>Social<br>(%)                                             | G.<br>Educação<br>(%) | G.<br>Saúde<br>(%) | G.<br>Saneamento<br>(%) | G. S.<br>Pública<br>(%) | G.<br>Urbanização<br>(%) | Total<br>Agregado<br>(R\$ 1,00<br>mil) | Eftg     |
| 2002    | 7,8                                                               | 31,7                  | 26,9               | 0,0                     | 3,1                     | 30,5                     | 116945985,5                            | _        |
| 2003    | 6,5                                                               | 30,3                  | 29,4               | 0,0                     | 3,6                     | 30,1                     | 123118458,1                            | _        |
| 2004    | 6,3                                                               | 27,5                  | 29,9               | 0,0                     | 2,8                     | 33,6                     | 157419875,3                            | _        |
| 2005    | 5,7                                                               | 30,5                  | 28,9               | 0,0                     | 2,6                     | 32,4                     | 166220063,7                            | _        |
| 2006    | 6,7                                                               | 31,3                  | 32,8               | 0,0                     | 2,7                     | 26,4                     | 171599899,3                            | -        |
| 2007    | 6,1                                                               | 32,1                  | 30,6               | 0,0                     | 2,5                     | 28,8                     | 228667953,0                            | -        |
| 2008    | 5,5                                                               | 32,2                  | 33,3               | 0,0                     | 2,8                     | 26,3                     | 257119148,9                            | -        |
| 2009    | 6,7                                                               | 33,0                  | 29,5               | 11,3                    | 2,9                     | 16,7                     | 265941550,6                            | 4,6E-05  |
| 2010    | 6,6                                                               | 37,1                  | 29,4               | 4,0                     | 3,3                     | 19,6                     | 278226385,1                            | 4,0E-05  |
| 2011    | 5,2                                                               | 36,6                  | 32,2               | 1,1                     | 2,6                     | 22,3                     | 330834914,3                            | 3,9E-05  |
| 2012    | 5,0                                                               | 38,6                  | 34,2               | 2,8                     | 2,9                     | 16,4                     | 408775647,5                            | 4,4E-05  |
| 2013    | 3,9                                                               | 41,5                  | 29,5               | 4,5                     | 4,0                     | 16,6                     | 427080097,1                            | 3,9E-05  |
| 2014    | 4,0                                                               | 39,6                  | 29,5               | 5,4                     | 5,5                     | 16,0                     | 510317426,8                            | 3,5E-05  |
| 2015    | 3,5                                                               | 38,4                  | 30,7               | 6,6                     | 4,2                     | 16,7                     | 534494854,0                            | 3,1E-05  |
| Média   | 5,7                                                               | 34,3                  | 30,5               | 2,5                     | 3,2                     | 23,7                     | 284054447,1                            | 0,000039 |
| Máximo  | 7,8                                                               | 41,5                  | 34,2               | 11,3                    | 5,5                     | 33,6                     | 534494854,0                            | 0,000045 |
| Mínimo  | 3,5                                                               | 27,5                  | 26,9               | 0,0                     | 2,5                     | 16,0                     | 116945985,5                            | 0,000031 |

Fonte: DATASUS, IBGE e FINBRA (2018).

Elaboração do autor.

Por sua vez, a partir da leitura da Tabela, constata-se a evolução descritiva das magnitudes das médias percentuais de gastos sociais e econômicos do município de Palmas, dentre tais, destacam-se os seguintes gastos: gastos com educação (34,3%), gastos com saúde (30,5%) e gastos com urbanização (23,7%). Neste contexto, podemos inserir na análise as contribuições empíricas de Glaeser e Sacerdote (1999), as quais se propuseram a investigar o efeito da urbanização das cidades na formação das taxas de crimes os níveis de crime, assim como procuraram responder que o porquê que os níveis de crimes nas cidades urbanizadas são mais elevados, por sua vez levando a inferir que parcela da eficiência no combate ao crime de óbitos por causas externas (homicídio) pode ser explicada por níveis de gastos em urbanização.

Posteriormente, outros gastos médios menos expressivos no periodo analisado foram estimados, dentre tais: gastos com assistência social (5,7%), gastos com saneamento (2,5%) e gastos com segurança pública (3,2%). Observa-se, neste contexto, a pouca expressividade, essencialmente, na média de gastos com segurança pública no município de Palmas, associado a isto o valor dos escores de eficiência obtidos com o resultado, que se demonstrou abaixo da menor classificação de escore de eficiência para o combate do crime de óbitos por causas externas (homicídios) no período estudado.

#### 6.2.8. Estado de Rondônia, município de Porto Velho.

Em relação a análise da média da eficiência total por tamanho da população (eftp), permite-se observar a partir da magnitude média que, o município de **Porto Velho** apresentou uma magnitude média de eficiência por tamanho populacional classificada como de **Alta eficiência** (1,00) e maior, quando comparada com a magnitude da média dos demais municípios da Amazônia Legal. Importante ressaltar neste contexto, que o ano de 2010, consolidou um total máximo de óbitos por causas externas (homicídios) na ordem de (664), assim como uma população de (428527).

A Tabela 123 demonstra a evolução descritiva das médias dos indicadores de eficiência total geral (eftg) e eficiência total por tamanho da população (eftp) do município de **Porto Velho** do Estado de Rondônia. A partir de comparação empírica descritiva entre as médias, consegue-se perceber que a magnitude da média da eficiência total geral (eftg) estimada para o município de **Porto Velho**, relacionada com o indicador de enfrentamento ao crime de óbitos por causas externas (homicídio), apresentou-se com classificação **abaixo do** 

menor nível de eficiência (0,000019) e menor do que a magnitude da média dos demais municípios da Amazônia Legal, conforme (DATASUS, 2018).

Tabela 123: Média da eficiência do município de Porto Velho (RO).

| Período | PIB<br>(R\$ 1,00 mil) | População | Óbitos<br>Causas<br>Externas<br>(Homicídios) | Eftg      | Eftp |
|---------|-----------------------|-----------|----------------------------------------------|-----------|------|
| 2002    | 2325673,1             | 347844    | 532                                          | -         | -    |
| 2003    | 2765053,8             | 353961    | 470                                          | -         | -    |
| 2004    | 3388128,1             | 380884    | 544                                          | -         | -    |
| 2005    | 3801042,1             | 373917    | 523                                          | 1,91205E- | 1    |
|         |                       |           |                                              | 05        |      |
| 2006    | 4093384,5             | 380974    | 626                                          | -         | -    |
| 2007    | 4474811,5             | 369345    | 495                                          | -         | -    |
| 2008    | 5267601,8             | 379186    | 505                                          | -         | -    |
| 2009    | 6841953,5             | 382829    | 563                                          | -         | -    |
| 2010    | 9093823,8             | 428527    | 664                                          | -         | -    |
| 2011    | 11139255,0            | 435732    | 604                                          | -         | -    |
| 2012    | 11970876,7            | 442701    | 608                                          | -         | -    |
| 2013    | 11699707,0            | 484992    | 571                                          | -         | -    |
| 2014    | 12793026,0            | 494013    | 539                                          | -         | -    |
| 2015    | 13946783,6            | 502748    | 590                                          |           | -    |
| Média   | 7400080,0             | 411261    | 560                                          | 0,000019  | 1    |
| Máximo  | 13946783,6            | 502748    | 664                                          | 0,000019  | 1    |
| Mínimo  | 2325673,1             | 347844    | 470                                          | 0,000019  | 1    |

Fonte: DATASUS, IBGE e FINBRA (2018).

Elaboração do autor.

A evolução dos valores quantitativos do Produto Interno Bruto (PIB) do município de **Porto Velho**, apresentou-se de forma crescente no decorrer do período, estimando em decorrência disto uma média descritiva no valor de (R\$ 7.400.080,00). Observando o comportamento desta evolução quantitativa do PIB, percebe-se que no ano de 2015, evidenciou-se o valor máximo do período analisado (R\$ 13.946.783, 60), assim como apresentou um **número expressivo e maior** (**590**) do que a média de óbitos por causas externas (homicídios).

Ao analisar a evolução percentual dos gastos sociais e econômicos relacionada ao total agregado no período, consegue-se perceber que a estimação do escore da eficiência total geral (eftg) está condicionada a um conjunto de interações percentuais entre as variáveis do modelo. Desta forma, fica criterioso informar, que o resultado da média da (eftg), neste contexto analisado, classificou-se **abaixo do menor nível de eficiência** (0,000019) no combate ao crime de óbito por causas externas (homicídios).

Tabela 124: Participação percentual das variáveis - Porto Velho (RO).

| Período | G.A.<br>Social<br>(%) | G.<br>Educação<br>(%) | G.<br>Saúde<br>(%) | G.<br>Saneamento<br>(%) | G. S.<br>Pública<br>(%) | G.<br>Urbanização<br>(%) | Total<br>Agregado<br>(R\$ 1,00<br>mil) | Eftg      |
|---------|-----------------------|-----------------------|--------------------|-------------------------|-------------------------|--------------------------|----------------------------------------|-----------|
| 2002    | 6,4                   | 33,8                  | 35,1               | 0,3                     | 0,0                     | 24,4                     | 94891965,7                             | -         |
| 2003    | 6,4                   | 36,6                  | 37,7               | 0,4                     | 0,0                     | 18,8                     | 103682214,5                            | -         |
| 2004    | 5,3                   | 39,1                  | 37,3               | 0,4                     | 0,0                     | 17,9                     | 119000749,9                            | -         |
| 2005    | 4,9                   | 45,6                  | 38,6               | 1,1                     | 0,0                     | 9,7                      | 123088954,6                            | 1,91205E- |
|         |                       |                       |                    |                         |                         |                          |                                        | 05        |
| 2006    | 6,2                   | 21,6                  | 51,3               | 1,7                     | 0,0                     | 19,2                     | 132486240,2                            | -         |
| 2007    | 4,2                   | 39,8                  | 35,4               | 1,5                     | 0,0                     | 19,1                     | 217721250,3                            | -         |
| 2008    | 4,4                   | 33,4                  | 29,6               | 0,1                     | 0,0                     | 32,5                     | 302429710,8                            | -         |
| 2009    | 3,6                   | 36,3                  | 33,7               | 0,2                     | 0,0                     | 26,1                     | 329861750,5                            | -         |
| 2010    | 2,9                   | 27,9                  | 29,4               | 0,2                     | 0,0                     | 39,7                     | 491144315,6                            | -         |
| 2011    | 3,9                   | 41,4                  | 34,3               | 0,1                     | 0,0                     | 20,3                     | 516493942,3                            | -         |
| 2012    | 3,8                   | 35,0                  | 36,1               | 0,1                     | 0,0                     | 25,0                     | 631580492,7                            | -         |
| 2013    | 3,3                   | 37,9                  | 36,5               | 3,6                     | 0,0                     | 18,7                     | 635420422,4                            | -         |
| 2014    | 3,4                   | 37,8                  | 38,8               | 2,0                     | 0,0                     | 18,0                     | 640981032,5                            | -         |
| 2015    | 3,5                   | 37,0                  | 38,7               | 3,0                     | 0,0                     | 17,8                     | 726571011,9                            | -         |
| Média   | 4,4                   | 36,0                  | 36,6               | 1,1                     | 0,0                     | 21,9                     | 361811003,8                            | 0,000019  |
| Máximo  | 6,4                   | 45,6                  | 51,3               | 3,6                     | 0,0                     | 39,7                     | 726571011,9                            | 0,000019  |
| Mínimo  | 2,9                   | 21,6                  | 29,4               | 0,1                     | 0,0                     | 9,7                      | 94891965,7                             | 0,000019  |

Elaboração do autor.

Por sua vez, a partir da leitura da Tabela 124, constata-se a evolução descritiva das magnitudes das médias percentuais de gastos sociais e econômicos do município de **Porto Velho**, dentre tais, destacam-se os seguintes gastos: **gastos com saúde** (36,6%), **gastos com educação** (36,0%) e gastos com urbanização (21,9%). Neste contexto, podemos inserir na análise as contribuições empíricas de Glaeser e Sacerdote (1999), as quais se propuseram a investigar o efeito da urbanização das cidades na formação das taxas de crimes os níveis de crime, assim como procuraram responder que o porquê que os níveis de crimes nas cidades urbanizadas são mais elevados, por sua vez levando a inferir que parcela da eficiência no combate ao crime de óbitos por causas externas (homicídio) pode ser explicada por níveis de gastos em urbanização.

Posteriormente, outros gastos médios menos expressivos no periodo analisado foram estimados, dentre tais: gastos com assistência social (4,4%), gastos com saneamento (1,1%) e gastos com segurança pública (0,0%). Observa-se, neste contexto, a pouca expressividade, essencialmente, na média de gastos com segurança pública no município de Porto Velho, associado a isto o valor dos escores de eficiência obtidos com o resultado, que

se demonstrou **abaixo da menor classificação de escore de eficiencia** para o combate do crime de óbitos por causas externas (homicídios) no período estudado.

#### 6.2.9. Estado do Maranhão, município de São Luis.

A partir da análise da média da eficiência total por tamanho da população (eftp), permite-se observar que o município de **São Luis** apresentou uma magnitude média de eficiência por tamanho populacional classificada como de **Alta eficiência** (1,00) e maior, quando comparada com a magnitude da média dos demais municípios da Amazônia Legal. Importante ressaltar neste contexto, que o ano de 2014, consolidou um total máximo de óbitos por causas externas (homicídios) na ordem de (1570), assim como uma população de (1064197) e, por fim, apresentando um escore de eficiência técnica classificado como **Alta** (1,00) no período analisado.

A Tabela 125 demonstra a evolução descritiva das médias dos indicadores de eficiência total geral (eftg) e eficiência total por tamanho da população (eftp) do município de **São Luis** do Estado do Maranhão. A partir de comparação empírica descritiva entre as médias, consegue-se perceber que a magnitude da média da eficiência total geral (eftg) estimada para o município de **São Luis**, relacionada com o indicador de enfrentamento ao crime de óbitos por causas externas (homicídio), apresentou-se com classificação **abaixo do menor nível de eficiência (0,0000081) e menor** do que a magnitude da média dos demais municípios da Amazônia Legal, conforme (DATASUS, 2018).

Tabela 125: Média da eficiência do município de São Luis (MA).

| Período | PIB<br>(R\$ 1,00 mil) | População | Óbitos<br>Causas<br>Externas<br>(Homicídios) | Eftg    | Eftp |
|---------|-----------------------|-----------|----------------------------------------------|---------|------|
| 2002    | 5744807,6             | 906567    | 602                                          | -       | -    |
| 2003    | 6763404,0             | 923526    | 685                                          | -       | -    |
| 2004    | 7902077,9             | 959124    | 695                                          | -       | -    |
| 2005    | 9276731,9             | 978824    | 747                                          | -       | -    |
| 2006    | 11487645,3            | 998385    | 769                                          | -       | -    |
| 2007    | 11395640,8            | 957515    | 879                                          | 1,0E-05 | -    |
| 2008    | 13932770,1            | 986826    | 970                                          | 9,5E-06 | 1    |
| 2009    | 14775475,8            | 997098    | 1051                                         | 8,9E-06 | 1    |
| 2010    | 18211487,5            | 1014837   | 1121                                         | 8,9E-06 | 1    |
| 2011    | 19952970,1            | 1027429   | 1127                                         | 8,0E-06 | 1    |
| 2012    | 22677841,1            | 1039610   | 1244                                         | 6,5E-06 | 1    |

| 2013   | 23134440,3 | 1053922 | 1543 | 6,4E-06   | 1    |
|--------|------------|---------|------|-----------|------|
| 2014   | 27308045,7 | 1064197 | 1570 | 6,9E-06   | 1    |
| 2015   | 26832481,0 | 1073893 | 1453 | 1,0E-05   | 0,99 |
| Média  | 15671129,9 | 998697  | 1033 | 0,0000081 | 1,00 |
| Máximo | 27308045,7 | 1073893 | 1570 | 0,000010  | 1,00 |
| Mínimo | 5744807,6  | 906567  | 602  | 0,0000063 | 0,99 |

Elaboração do autor.

A evolução dos valores quantitativos do Produto Interno Bruto (PIB) do município de São Luis, apresentou-se de forma crescente no decorrer do período, estimando em decorrência disto uma média descritiva no valor de (R\$ 15.671.129,90). Observando o comportamento desta evolução quantitativa do PIB, percebe-se que no ano de 2014, evidenciou-se o valor máximo do período analisado (R\$ 27.308.045, 70), assim como apresentou um número expressivo e maior (1570) de óbitos por causas externas (homicídios) (602), que na ocasião fora evidenciado um escore de eficiência total geral (eftg) abaixo do menor nível de classificação de eficiência (6,9E-06).

Ao analisar a evolução percentual dos gastos sociais e econômicos relacionada ao total agregado no período, consegue-se perceber que a estimação do escore da eficiência total geral (eftg) está condicionada a um conjunto de interações percentuais entre as variáveis do modelo. Desta forma, fica criterioso informar, que o resultado da média da (eftg), neste contexto analisado, classificou-se **abaixo do menor nível de eficiência** (0,0000081) no combate ao crime de óbito por causas externas (homicídios).

Tabela 126: Participação percentual das variáveis - São Luis (MA).

|         | G.A.   | G.       | G.    | G.         | G. S.   | G.          | Total         |           |
|---------|--------|----------|-------|------------|---------|-------------|---------------|-----------|
| Período | Social | Educação | Saúde | Saneamento | Pública | Urbanização | Agregado (R\$ | Eftg      |
|         | (%)    | (%)      | (%)   | (%)        | (%)     | (%)         | 1,00 mil)     |           |
| 2002    | 3,4    | 25,9     | 52,5  | 4,2        | 0,0     | 14,0        | 333138645,0   | -         |
| 2003    | 2,7    | 27,6     | 52,0  | 1,0        | 0,0     | 16,8        | 345485438,1   | -         |
| 2004    | 3,0    | 29,9     | 49,5  | 1,1        | 0,0     | 16,5        | 439800251,8   | -         |
| 2005    | 2,9    | 27,9     | 49,3  | 0,8        | 0,0     | 19,1        | 502563874,7   | -         |
| 2006    | 2,9    | 28,6     | 50,6  | 1,2        | 0,0     | 16,6        | 561423089,4   | -         |
| 2007    | 2,5    | 30,4     | 49,7  | 10,9       | 0,0     | 6,4         | 646822209,3   | -         |
| 2008    | 2,6    | 30,9     | 48,0  | 0,6        | 1,2     | 16,7        | 766304041,2   | 1,0E-05   |
| 2009    | 2,5    | 31,5     | 49,4  | 8,7        | 1,3     | 6,6         | 888812666,0   | 9,5E-06   |
| 2010    | 2,9    | 29,2     | 44,7  | 13,3       | 1,3     | 8,6         | 1157382686,2  | 8,9E-06   |
| 2011    | 2,8    | 33,0     | 44,5  | 10,2       | 1,3     | 8,3         | 1231155516,0  | 8,9E-06   |
| 2012    | 2,5    | 27,4     | 48,5  | 11,4       | 1,6     | 8,5         | 1227384425,9  | 8,0E-06   |
| 2013    | 2,3    | 32,9     | 44,6  | 11,1       | 1,4     | 7,5         | 1427650690,4  | 6,5E-06   |
| 2014    | 2,6    | 32,0     | 43,4  | 8,2        | 1,3     | 12,5        | 1621408133,7  | 6,4E-06   |
| 2015    | 2,2    | 30,9     | 46,8  | 8,2        | 0,1     | 11,8        | 1653793724,4  | 6,9E-06   |
| Média   | 2,7    | 29,9     | 48,1  | 6,5        | 0,7     | 12,1        | 914508956,6   | 0,0000081 |

| Máximo | 3,4 | 33,0 | 52,5 | 13,3 | 1,6 | 19,1 | 1653793724,4 | 0,000010  |
|--------|-----|------|------|------|-----|------|--------------|-----------|
| Mínimo | 2,2 | 25,9 | 43,4 | 0,6  | 0,0 | 6,4  | 333138645,0  | 0,0000063 |

Elaboração do autor.

Por sua vez, a partir da leitura da Tabela 126, constata-se a evolução descritiva das magnitudes das médias percentuais de gastos sociais e econômicos do município de **São Luis**, dentre tais, destacam-se os seguintes gastos: **gastos com saúde (48,1%), gastos com educação (29,9%) e gastos com urbanização (12,1%)**. Neste contexto, podemos inserir na análise as contribuições empíricas de Glaeser e Sacerdote (1999), as quais se propuseram a investigar o efeito da urbanização das cidades na formação das taxas de crimes os níveis de crime, assim como procuraram responder que o porquê que os níveis de crimes nas cidades urbanizadas são mais elevados, por sua vez levando a inferir que parcela da eficiência no combate ao crime de óbitos por causas externas (homicídio) pode ser explicada por níveis de gastos em urbanização.

Posteriormente, outros gastos médios menos expressivos no periodo analisado foram estimados, dentre tais: gastos com saneamento (6,5%), gastos com assistência social (2,7%) e gastos com segurança pública (0,7%). Observa-se, neste contexto, a pouca expressividade, essencialmente, na média de gastos com segurança pública no município de São Luis, associado a isto o valor dos escores de eficiência obtidos com o resultado, que se demonstrou abaixo da menor classificação de escore de eficiencia para o combate do crime de óbitos por causas externas (homicídios) no período estudado.

## **CONCLUSÕES**

O esforço construtivo desta tese, delimitou-se a estabelecer como **objetivo geral** a estimação de escore de eficiência técnica dos fatores de natureza socieconômica e institucionais relacionados com a eficiência dos gastos em segurança pública para o controle do crime de óbito por causas externas (homicídios) ocorrido nos municípios dos Estados Federados da Amazônia Legal no período de 2002 a 2015. Para fazer frente a este desafio empírico, apropriou-se do estado da arte fundamentado por Becker (1968), que sistematiza e racionaliza os motivos que levam o individuo a cometer um crime.

A estrutura metodológica, por sua vez, delimitou o objeto a investigado, local e período temporal, assim como a técnica utilizada para a estimação da eficiência total geral (eftg) e eficiência por tamanho da população (eftp), através da utilização do método representado pela análise de envoltória de dados (DEA), que é uma abordagem não paramétrica que envolve programação matemática em sua estimação.

A partir da obtenção dos resultados estimados de escore de eficiência técnica de cada DMU (município), consegue-se identificar por classificação de eficiência, neste conjunto estimado, as DMUs que necessitam de atenção em investimentos em segurança pública e outras variáveis de natureza socieconômica para o eficiente combate ao crime de óbito por causas externas (homicídio). Desta forma, foram delimitados quatro estratos de eficiência de análise, sendo 0,01 a 0,25 (baixa eficiência), 0,25 a 0,50 (regular eficiência), 0,50 a 0,75 (média eficiência) e 0,75 a 1,00 (eficiência alta).

A metodologia utilizada para responder a pergunta de tese: Em que medida os diversos fatores ou variáveis de natureza socioeconômicas e institucionais influênciam na eficiência dos gastos com segurança pública para o controle do crime de óbito por causas externas (homicídio) nos municípios dos Estados Federados pertecentes a Amazônia Legal no período de 2002 a 2015? E para a comprovação das Hipóteses:

**H01:** A evolução do escore de eficiência total geral, para o controle dos óbitos decorrentes de causas externas (homicídios), apresenta diferentes magnitudes quantitativas e qualitativas relacionadas à natureza socioeconômica dos municípios pertencentes à Amazônia Legal no período de 2002 a 2015, sendo grande parte classificadas como eficiência baixa;

e H02): A evolução do escore de eficiência por tamanho populacional, para o controle dos óbitos decorrentes de causas externas (homicídios), apresenta diferentes magnitudes quantitativas e qualitativas relacionadas à natureza populacional dos municípios pertencentes à Amazônia Legal no período de 2002 a 2015, sendo grande parte classificadas como eficiência alta:

Construiu-se a partir dos resultados estimados de cada DMU (município), elecando as DMUs prioritárias de cada Estado da Amazônia legal, para a devida análise comparativa empírica de cada variável utilizada no modelo proposto, sendo tais DMUs as seguintes: Rio Branco (AC), Belém (PA), Manaus (AM), Macapá (AP), Boa Vista (RR), Cuiabá (MT), Palmas (TO), Porto Velho (RO) e São Luis (MA).

O município de **Rio Branco**, Estado do Acre, apresentou estimação de escore médio de eficiência total por tamanho da população (eftp) classificada como **Média** (0,62) e menor, quando comparada com a magnitude da média (0,72) dos demais municípios da Amazônia Legal. Ressalta-se que neste período, o ano de 2014 consolidou um total máximo de óbitos por causas externas (homicídios) (323) e uma população de (363928), indicando um escore de eficiência técnica classificado como **Médio** (0,27) neste período analisado, portanto **Menor** do que a média encontrada em todo o período da análise.

Em se tratando da análise da média da eficiência total geral (eftg), o município de **Rio Branco** apresentou classificação de escore médio de eficiência **abaixo do menor nível de eficiência** (0,000039) **e menor**, quando comparada a média dos demais municípios da Amazônia Legal, valores com intervalo entre (3,4E-05 a 5,0E-05). A evolução dos valores do Produto Interno Bruto (PIB) de **Rio Branco** se apresentou de forma crescente no decorrer do período, estimando uma média descritiva no valor de (**R\$ 4.581.181,10**). Neste contexo, constata-se a evolução descritiva das magnitudes das médias percentuais dos gastos sociais e econômicos, dentre tais: **gastos com urbanização** (37,5%), **gastos com educação** (27,1%), **gastos com saúde** (22,8%), **gastos com saneamento** (7,3%), **gastos com assitência social** (4,3%) **e gastos com segurança pública** (1,0%), (FINBRA, IBGE e DATASUS 2018).

Complementar a este quadro, o município de **Belém**, Estado do Pará, apresentou estimação de escore médio de eficiência total por tamanho da população (eftp) classificada como **Alta** (1,00) e maior quando comparada com a magnitude da média (0,72) dos demais municípios da Amazônia Legal. Importante informar que no período analisado, o ano 2005

consolidou um total máximo de óbitos por causas externas (homicídios) (1255) e uma população de (1405871), indicando um escore de eficiência técnica classificado como Alto (1,00) para o período, portanto Maior do que a média encontrada em todo período de Análise, (DATASUS, 2018).

Por sua vez, em relação a análise da média da eficiência total geral (eftg), o município de Belém apresentou classificação de escore médio de eficiência abaixo do menor nível de eficiência (0,00001) e menor, quando comparada a média dos demais municípios da Amazônia Legal, valores com intervalo de (1,0E-05 a 9,9E-06). A evolução dos valores do Produto Interno Bruto (PIB) de Belém se apresentou de forma crescente no decorrer do período, estimando uma média descritiva no valor de (R\$ 17.996.469,10). Neste contexto, constata-se a evolução descritiva das magnitudes das médias percentuais dos gastos socioeconômicos, dentre tais: gastos com saúde (44,3%), gastos com urbanização (23,3%), gastos com educação (20,1%), gastos com saneamento (5,3%), gastos com assistência social (3,9%) e gastos com segurança pública (3,1%), (FINBRA, IBGE e DATASUS, 2018).

Destarte a isto, o município de **Manaus**, Estado do Amazonas, apresentou estimação de escore médio de eficiência total por tamanho da população (eftp) classificada como **Alta** (1,00) e maior, quando comparada com a magnitude média (0,72) dos demais municípios da Amazônia Legal. Observa-se que neste período, o ano de 2015 consolidou um total máximo de óbitos por causas externas (1977) e uma população de (2057711), indicando um escore de eficiência técnica classificado como **Alto** (1,00) neste período analisado, portanto **Maior** do que a média encontrada em todo o período de análise.

Perante ao exposto, em relação a análise da média da eficiência total geral (eftg), o município de Manaus apresentou classificação de escore médio de eficiência abaixo do menor nível de eficiência (0,0000076) e menor, quando comparada a média dos demais municípios da Amazônia Legal, valores com intervalo de (5,1E-06 a 9,5E-06). A evolução dos valores do Produto Interno Bruto (PIB) de Manaus se apresentou de forma crescente no decorrer do período, estimando uma média descritiva no valor de (R\$ 43.053.611,50). Neste contexto, constata-se a evolução descritiva das magnitudes das médias percentuais dos gastos socioeconômicos, dentre tais: gastos com educação (36,5%), gastos com urbanização (30,6%), gastos com saúde (26,6%), gastos com assistência social (4,4%), gastos com

segurança pública (1,0%) e gastos com saneamento (0,9%), (FINBRA, IBGE e DATASUS, 2018).

Por conseguinte, o município de **Macapá**, Estado do Amapá, apresentou estimação de escore médio de eficiência total por tamanho da população (eftp) classificada como **Alta** (0,99) e maior, quando comparada com a magnitude média (0,72) dos demais municípios da Amazônia Legal. Observa-se que neste período, o ano de 2015 consolidou um total máximo de óbitos por causas externas de (385) e uma população de (466171), indicando um escore de eficiência técnica classificado como **Alto** (9,4E-01) neste período, portanto **Maior** do que a média encontrada em todo o período de análise.

Em se tratando da relação da análise da média da eficiência total geral (eftg), o município de Macapá apresentou classificação de escore médio de eficiência abaixo do menor nível de eficiência (0,000031) e menor, quando comparada a média dos demais municípios da Amazônia Legal, valores com intervalo de (2,6E-05 a 3,8E-05). A evolução dos valores do Produto Interno Bruto (PIB) de Macapá se apresentou de forma crescente no decorrer do período, estimando uma média descritiva no valor de (R\$ 5.199.096,90). Neste contexto, constata-se a evolução descritiva das magnitudes das médias percentuais dos gastos socioeconômicos, dentre tais: gastos com educação (42,2%), gastos com saúde (32,8%), gastos com urbanização (14,6%), gastos com segurança pública (6,0%), gastos com assistência social (3,1%) e gastos com saneamento (1,3%), (FINBRA, IBGE e DATASUS, 2018).

Adiante com o exposto, o município de **Boa Vista**, Estado de Roraima, apresentou estimação de escore médio de eficiência total por tamanho da população (eftp) classificada como **Média (0,55) e menor**, quando comparada com a magnitude média (**0,72**) dos demais municípios da Amazônia Legal. Observa-se que neste período, o ano de 2013 consolidou um total máximo de óbitos por causas externas de (**331**) e uma população de (**308996**), indicando um escore de eficiência técnica classificado como **Regular (4,32E-01)** neste período, portanto **Menor** do que a média encontrada em todo o período de análise.

Por sua vez, em relação a análise da média da eficiência total geral (eftg), o município de **Boa Vista** apresentou classificação de escore médio de eficiência **abaixo do menor nível de eficiência** (0,000043) **e menor**, quando comparada a média dos demais municípios da Amazônia Legal, valores com intervalo de (3,0E-05 a 4,8E-05). A evolução dos valores do

Produto Interno Bruto (PIB) de **Boa Vista** se apresentou de forma crescente no decorrer do período, estimando uma média descritiva no valor de (**R\$ 4.322.102,80**). Neste contexto, constata-se a evolução descritiva das magnitudes das médias percentuais dos gastos socioeconômicos, dentre tais: **gastos com urbanização** (32,2%), **gastos com saúde** (30,5%), **gastos com educação** (28,5%), **gastos com assistência social** (4,3%), **gastos com saneamento** (3,8%) e **gastos com segurança pública** (0,7%), (FINBRA, IBGE e DATASUS, 2018).

Diante deste quadro acima, o município de **Cuiabá**, Estado do Mato Grosso, apresentou estimação de escore médio de eficiência total por tamanho da população (eftp) classificada como **Alta (0,81) e maior**, quando comparada com a magnitude média (0,72) dos demais municípios da Amazônia Legal. Observa-se que neste período, o ano de 2014 consolidou um total máximo de óbitos por causas externas de (703) e uma população de (575480), indicando um escore de eficiência técnica classificado como **Média (6,97E-01)** neste período, portanto **Maior** do que a média encontrada em todo o período de análise.

Complementar a isto, em relação a análise da média da eficiência total geral (eftg), o município de **Cuiabá** apresentou classificação de escore médio de eficiência **abaixo do menor nível de eficiência (0,000016) e menor,** quando comparada a média dos demais municípios da Amazônia Legal, valores com intervalo de (1,42E-05 a 1,82E-05). A evolução dos valores do Produto Interno Bruto (PIB) de **Cuiabá** se apresentou de forma crescente no decorrer do período, estimando uma média descritiva no valor de (R\$ 11.601.592,50). Neste contexto, constata-se a evolução descritiva das magnitudes das médias percentuais dos gastos socioeconômicos, dentre tais: **gastos com saúde (44,8%), gastos com educação (30,3%), gastos com urbanização (19,3%), gastos com assistência social (3,0%), gastos com saneamento (2,5%) e gastos com segurança pública (0,1%), (FINBRA, IBGE e DATASUS, 2018).** 

Por sua vez, o município de **Palmas**, Estado do Tocantins, apresentou estimação de escore médio de eficiência total por tamanho da população (eftp) classificada como **Alta** (0,76) e maior, quando comparada com a magnitude média (0,72) dos demais municípios da Amazônia Legal. Observa-se que neste período, o ano de 2015 consolidou um total máximo de óbitos por causas externas (322) e uma população de (272726), indicando um escore de

eficiência técnica classificado como **Médio** (**5,6E-01**) neste período analisado, portanto **Menor** do que a média encontrada em todo o período de análise.

Perante ao exposto, em relação a análise da média da eficiência total geral (eftg), o município de **Palmas** apresentou classificação de escore médio de eficiência **abaixo do menor nível de eficiência (0,000039) e menor,** quando comparada a média dos demais municípios da Amazônia Legal, valores com intervalo de (3,1E-05 a 4,6E-05). A evolução dos valores do Produto Interno Bruto (PIB) de **Palmas** se apresentou de forma crescente no decorrer do período, estimando uma média descritiva no valor de (R\$ 3.529.690,00). Neste contexto, constata-se a evolução descritiva das magnitudes das médias percentuais dos gastos socioeconômicos, dentre tais: **gastos com educação (34,3%), gastos com saúde (30,5%), gastos com urbanização (23,7%), gastos com assistência social (5,7%), gastos com saneamento (2,5%) e gastos com segurança pública (3,2%), (FINBRA, IBGE e DATASUS, 2018).** 

Por conseguinte, o município de **Porto Velho**, Estado de Rondônia, apresentou estimação de escore médio de eficiência total por tamanho da população (eftp) classificada como **Alta (1,00) e maior**, quando comparada com a magnitude média (**0,72**) dos demais municípios da Amazônia Legal. Observa-se que neste período, o ano de 2005 consolidou um total de óbitos por causas externas de (**523**) e uma população de (373917), indicando um escore de eficiência técnica classificado como **Alto (1,00)** neste período, portanto **Igual** a média encontrada em todo o período de análise.

Complementar a isto, em relação a análise da média da eficiência total geral (eftg), o município de **Porto Velho** apresentou classificação de escore médio de eficiência **abaixo do menor nível de eficiência** (0,000019) e menor, quando comparada a média dos demais municípios da Amazônia Legal, valor de (1,91205E-05). A evolução dos valores do Produto Interno Bruto (PIB) de **Porto Velho** se apresentou de forma crescente no decorrer do período, estimando uma média descritiva no valor de (R\$ 7.400.080,00). Neste contexto, constata-se a evolução descritiva das magnitudes das médias percentuais dos gastos socioeconômicos, dentre tais: **gastos com saúde** (36,6%), **gastos com educação** (36,0%), **gastos com urbanização** (21,9%), **gastos com assistência social** (4,4%), **gastos com saneamento** (1,1%) e **gastos com segurança pública** (0,0%), (FINBRA, IBGE e DATASUS, 2018).

Por conseguinte, o município de **São Luis**, Estado do Maranhão, apresentou estimação de escore médio de eficiência total por tamanho da população (eftp) classificada como **Alta (1,00) e maior**, quando comparada com a magnitude média (**0,72**) dos demais municípios da Amazônia Legal. Observa-se que neste período, o ano de 2014 consolidou um total máximo de óbitos por causas externas de (**1570**) e uma população de (**1064197**), indicando um escore de eficiência técnica classificado como **Alto (1,00**) neste período, portanto **Maior** do que a média encontrada em todo o período de análise.

Por sua vez, em relação a análise da média da eficiência total geral (eftg), o município de São Luis apresentou classificação de escore médio de eficiência abaixo do menor nível de eficiência (0,0000081) e menor, quando comparada a média dos demais municípios da Amazônia Legal, valores com intervalo de (1,0E-05 a 9,5E-06). A evolução dos valores do Produto Interno Bruto (PIB) de São Luis se apresentou de forma crescente no decorrer do período, estimando uma média descritiva no valor de (R\$ 15.671.129,90). Neste contexto, constata-se a evolução descritiva das magnitudes das médias percentuais dos gastos socioeconômicos, dentre tais: gastos com saúde (48,1%), gastos com educação (29,9%), gastos com urbanização (12,1%), gastos com saneamento (6,5%), gastos com assistência social (2,7%) e gastos com segurança pública (0,7%), (FINBRA, IBGE e DATASUS, 2018).

A partir deste contexto estrutural geral, apresentam-se as conclusões norteadoras da tese, assim como as comprovações das hipóteses e as contribuições para a formação do estado da arte e continuação da investigação empírica do objeto de tese:

- 1) A partir de comparação empírica descritiva das médias dos gastos públicos dos principais municípios (DMUs) dos Estados Federados da Amazônia Legal, observa-se que a estimação dos escores de eficiência total geral (eftg) para o controle ao crime de óbito por causas externas (homicídios) não se constroi, exclusivamente, por gastos em segurança pública, como demonstra o percentual médio deste gastos em cada DMU: Rio Branco (1,0%), Belém (3,1%), Manaus (1,0%), Macapá (6,0%), Boa Vista (0,7%), Cuiabá (0,1%), Palmas (3,2%), Porto Velho (0,0%) e São Luis (0,7%);
- 2) Os gastos públicos mais expressivos, que possivelmente interferem na estimação dos escores de eficiência total geral (eftg) para o controle ao crime de óbito por

causas externas (homicídios), nesta DMUs, são os seguintes: a) Gastos com Saúde: Rio Branco (22,8%); Belém (44,3%); Manaus (26,6%); Macapá (32,8%); Boa Vista (30,5%); Cuiabá (44,8%); Palmas (30,5%); Porto Velho (36,6%) e São Luis (48,1%); b) Gastos com Educação: Rio Branco (27,1%); Belém (20,1%); Manaus (36,5%); Macapá (42,2%); Boa Vista (28,5%); Cuiabá (30,3%); Palmas (34,3%); Porto Velho (36,0%) e São Luis (29,9%); e, c) Gastos com Urbanização: Rio Branco (37,5%); Belém (23,3%); Manaus (30,6%); Macapá (14,6%); Boa Vista (32,2%); Cuiabá (19,3%); Palmas (23,7%); Porto Velho (21,9%) e São Luis (12,1%);

- 3) Aceita-se como **verdadeira** a **Hipótese 01**, que proposiciona que a evolução do escore de eficiência total geral, para o controle dos óbitos decorrentes de causas externas (homicídios), apresenta diferentes magnitudes quantitativas e qualitativas relacionadas à natureza socioeconômica dos municípios pertencentes à Amazônia Legal no período de 2002 a 2015, sendo grande parte classificadas como eficiência **baixa**;
- 4) Os principais municípios (DMUs) dos Estados Federados da Amazônia Legal, apresentam-se em suas estimações de eficiência a classificação Alta, possuindo quantitativo populacional maior de 50 (cinquenta) mil habitantes e evolução crescente no decorrer do período do Produto Interno Bruto (PIB), conforme demonstração: Rio Branco (0,62, Média); Belém (1,00, Alta); Manaus (1,00, Alta); Macapá (0,99, Alta); Boa Vista (0,55, Média); Cuiabá (0,81, Alta); Palmas (0,76, Alta); Porto Velho (1,00, Alta) e São Luis (1,00, Alta);
- 5) Aceita-se como **verdadeira** a **Hipótese 02**, que proposiciona que a evolução do escore de eficiência por tamanho populacional, para o controle dos óbitos decorrentes de causas externas (homicídios), apresenta diferentes magnitudes quantitativas e qualitativas relacionadas à natureza populacional dos municípios pertencentes à Amazônia Legal no período de 2002 a 2015, sendo grande parte classificadas como eficiência alta.

Ao final disto, todo este arcabouço analítico-descritivo demonstrou a necessidade de se buscar novas fronteiras construtivas de investigação empírica e adequações teóricas, que sistematizem frentes ainda não exploradas pelo critério objetivo da ciência qualitativa, que contribui, essencialmente, para a continuação do aperfeiçoamento do estado do arte científico nos mais diversos nichos temáticos de investigação, seja a respeito da relação existente entre o controle sistemático da criminalidade violenta, em especial, ao crime de óbitos por causas externas (homicídios), seja a respeito da atuação eficiente dos gastos com segurança pública relacionada com os fatores socieconômicos e institucionais existentes nos diversos municípios dos Estados Federados da Amazônia Legal.

## REFERÊNCIAS

ALBUQUERQUE, P. H. Shared legacies, disparate outcomes: Why American South border cities turned the tables on crime and their Mexican sisters did not? Crime Law Social Change, 47:69–88, 2007.

ALMEIDA, E. S., HADDAD, E. A., & HEWINGS, G. J. D. The spatial pattern of crime in Minas Gerais: An explanatory analysis. Economia Aplicada, 9(1):39–55, 2005.

ARCHER, D.; GARTNER, R. Violence and crime in cross-national perspective. Yale University Press, New Haven, 1984.

ARAUJO Jr., A. F. e FAJNZYLBER, P. Crime e economia: Um Estudo das Microrregiões Mineiras. Revista Econômica do Nordeste, Fortaleza, v.31, p. 630-659, novembro, 2000.

ANDRADE, M. V. e LISBOA, M. **Desesperança de vida: homicídio em Minas Gerais, Rio de Janeiro e São Paulo: 1981 a 1997.** Mimeo, Fundação Getúlio Vargas, Rio de Janeiro, 2000.

BANKER, R. D.; CHARNES, H.; COOPER, W. W. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, v. 30, n. 9, p. 1078-1092, 1984.

BATELLA, W. B.; DINIZ, A. M. A.; TEIXEIRA, A. P. **Explorando os determinantes da Geografia do Crime nas cidades médias mineiras.** Revista de Biologia e Ciências da Terra, 2008.

BEATO FILHO, C., PEIXOTO, B. T., & ANDRADE, M. V. Crime, oportunidade e vitimização. Revista Brasileira de Ci^encias Sociais, 19(55):73–89, 2004.

| . Cı | rimes e Cidades | . Belo Horizonte: | Editora UFM | G, 2012. |
|------|-----------------|-------------------|-------------|----------|
|      |                 |                   |             |          |

BECKER, G. Crime and punishment: an economic approach. The Journal of Political Economy, v.76, n.2, Mar./Apr., p. 169-217, 1968.

BELLONI, J. A. **Uma Metodologia de avaliação da eficiência produtiva de Universidades Federais Brasileiras.** Tese (Doutorado) — Programa de Pós-Graduação em Engenharia de Produção, do Departamento de Engenharia de Produção e Sistemas, da Universidade Federal de Santa Catarina. Florianópolis: UFSC, 2000.

BRONFENBRENNER, U. **The ecology of human Development.** Havard University Press. Cambridge, 1979.

BURSIK, R.; GRASMICK, H. G. Neighborhoods and crime: the dimensions of effective social control. New York: Lexington Books, 1993.

CARDOSO, T. G. **Desigualdade de Renda, Bolsa Família e a Criminalidade Urbana no Brasil.** Monografia. Universidade de Brasília – UNB – Departamento de Economia. Brasília-DF. 2013.

CARNEIRO, L. P. Violent crime in Latin America cities: Rio de Janeiro and São Paulo. Research Report USP, 129p, 2000.

CARRINGTON, R.; PUTHUCHEARY, N; e ROSE, D. Performance Measurement in Government Service Provision: The Case of Police Services in New South Wales. Journal of Productivity Analysis. vol. 8, p. 415-430, 1997.

CERQUEIRA, D. **Atlas da Violência.** Fórum Brasileiro de Segurança Pública, IPEA, Rio de Janeiro, 2017.

CERQUEIRA, D. & Lobão, W. **Determinantes da criminalidade: Arcabouc, os teóricos e resultados empíricos.** Dados - Revista de Ciências Sociais, 47(2):233–269, 2004.

CERQUEIRA, D.; LOBÃO, W. e CARVALHO, A. X. O jogo dos setes mitos e a miséria da segurança pública no Brasil. Texto de discussão, IPEA, Rio de Janeiro, 2005.

CARRERA-FERNANDEZ, J. e PEREIRA, R. **Diagnóstico da criminalidade na Bahia: Uma análise a partir da teoria econômica do crime.** Revista Econômica do Nordeste, Fortaleza, v.32, p. 792-806, 2001.

CARVALHO, A.; CERQUEIRA, D.; LOBÃO, W. Socieconomic structure, self-fulfillment, homicides and spatial dependence in Brazil.Rio de Janeiro, jul. 2005. (Texto para discussão, n. 1.105). Disponível em: http://www.ipea.gov.br/.

CERQUEIRA, D.; LOBÃO, W. **Determinantes da criminalidade: arcabouços teóricos e resultados empíricos.** Dados - Revista de Ciências Sociais, Rio de Janeiro, v. 47, n.2, p. 233-269, 2004.

CHARNES, A.; COOPER, W. W.; RHODES, E. Measuring the efficiency of decision making units. European Journal of Operational Research, v. 2, n. 6, p. 429-444, 1978.

COELLI, T. J. An Introduction to Efficiency and Productivity Analysis. 2nd edn, Springer, 2005.

COHEN, J & TITA, G. Spatial diffusion in homicide: exploring a general method of detecting spatial diffusion processes. Journal of Quantitative Criminology, Nova York, v. 15, p. 451-493, 1999.

DATASUS. Disponível em: <a href="http://www2.datasus.gov.br/DATASUS/index.php?area=02">http://www2.datasus.gov.br/DATASUS/index.php?area=02</a>. Acesso: 12 de maio de 2019.

EHRLICH, I. **Participation in illegitimate activities: a theoretical and Empirical investigation.** Journal of Political Economy, v.81, n. 3, p.521-565, 1973.

ENTORF, H., SPENGLER, H. Socioeconomic and demographic factors of crime in Germany: evidence from panel data of the German States. International Review of Law and Economics, v.20, n.1, p. 75-106, 2000.

FAJNZYLBER, P.; ARAÚJO JÚNIOR, A. F. **Violência e criminalidade.** Belo Horizonte: UFMG, 2001.

FAJNZYLBER, P., LEDERMAN, D., LOAYZA, N. **Determinants of crime rates in Latin America and the world: an empirical assessment.** Washington, DC: The World Bank, 1998.

FLEISHER, B. M. **The effect of unemployment on juvenile delinquency.** The Journal of Political Economy, 71(6): 543-555, 1963.

FINBRA. Disponível em: http://www.tesouro.fazenda.gov.br/en/finbra-financas-municipais. Acesso: 12 de maio de 2019.

FUNDAÇÃO AMAZÔNIA DE AMPARO A ESTUDOS E PESQUISAS. FAPESPA. Pará no Contexto Nacional 2017. Disponível em: <a href="http://www.fapespa.pa.gov.br/Menu/155">http://www.fapespa.pa.gov.br/Menu/155</a>. Acesso: 24 de novembro de 2017.

GLAESER, E. e SACERDOTE, B. **Why is there more crime in cities?** Journal of Political Economy 107, 1999.

GOMES, A. P.; BAPTISTA, A. J. M. S. **Análise envoltória de dados: Conceitos e modelos básicos.** In: SANTOS, M. L.; VIEIRA, W. C. (Eds). Métodos quantitativos em economia. Viçosa: UFV, p. 121-160, 2004.

GOULD, E. D., WEINBERG, B. A., & MUSTARD, D. Crime rates and local market opportunities in the United States: 1979-1995. Review of Economics and Statistics, 84(1):45–61, 2002.

GREENE, W.H. Econometrics Analysis. New Jersey: Pearson Education, 2003.

GUTIERREZ, M. B. S., MENDONÇA, M. J. C., SACHSIDA, A. & LOUREIRO, P. R. A. **Inequality and criminality revisited: Further evidence from Brazil.** In XXXII Encontro Nacional de Economia. ANPEC, João Pessoa. Disponível em: http://www.anpec.org.br/encontro2004/artigos/A04A149.pdf. Acesso: 22 de maio de 2009.

HIRSCHI, T. Causes of delinquency. Berkeley: University of Califórnia Press, 1969.

HUGUES, P. J. A. **Segregação socioespacial e violência na cidade de São Paulo: referências para a formulação de políticas públicas.** São Paulo em Perspectiva, São Paulo, v.18, n. 4, p. 93-102, out-dez. 2004. Disponível em: http://www.scielo.br/pdf/spp/v18n4/a11v18n4.pdf. Acesso em 17 de junho de 2011.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. <a href="https://ww2.ibge.gov.br/home/geociencias/geografia/amazonialegal.shtm?c=2">https://ww2.ibge.gov.br/home/geociencias/geografia/amazonialegal.shtm?c=2</a>. Acesso: 22 de maio de 2019.

JOHNSTON, J., DINARDI, J. **Econometrics methods**. McGraw-Hill International Editions, 1997.

LEVITT, S. The effect of prison population size on crime rates: Evidence from prison overcrowding litigation. Quarterly Journal of Economics, n.111, p. 319-352, 1996.

- \_\_\_\_\_. Using electoral cycles in police hiring to estimate the effect of police on crime. American Economic Review, n. 87, p. 270-290, 1997.
- LIMA, R.S. Valorização da produção e do uso de informações e estatísticas sobre segurança pública e justiça criminal no Brasil. Consultor Jurídico, 2003.
- LINS, M. P. E. e MEZA, L. A. Análise envoltória de dados e perspectivas de integração no ambiente do Apoio à Decisão. UFRJ –RJ, 2000.
- LOBO, L.F.; FERNANDEZ-CARRERA, J. A criminalidade na região metropolitana de Salvador. Análise Econômica, v.23, n. 44, p. 30-65, 2005.
- MACEDO, P. B. R. e SIMÕES, R. Amenidades urbanas e correlação espacial: uma análise intraurbana para BH (MG). Revista Brasileira de Economia, v.52, n.4, p.525-541, 1998.
- MATHIESON, D. e PASSELL, P. Homicide and Robbery in New York City: An Economic Model. Journal of Legal Studies, v. 6, p. 83-98, 1976.
- MAURO, P. Corruption and Growth. Quarterly Journal of Economics, p. 681-712, 1995.
- MELLO, J. C. C. B. S.; GOMES, E. G.; ASSIS, A. S.; MORAIS, D. P. **Eficiência DEA como medida de desempenho de unidades policiais.** Revista Produção Online. Florianópolis, v. 5, n. 3, p. 4-16, 2005.
- MENDONÇA, M. J. C. **Um modelo de criminalidade para o Caso Brasileiro.** IPEA / DF. Mimeo, 2001.
- MOLINA, A.; GOMES, L.F. **Criminologia.** 4° ed. São Paulo:Ed. Revista dos Tribunais, 2002.
- OLIVEIRA, C.A. Criminalidade e o tamanho das cidades Brasileiras: um enfoque da economia do crime. In: ENCONTRO NACIONAL DE ECONOMIA, 33., 2005, Natal. Anais...Natal: Associação Nacional dos Centros de Pós-Graduação em Economia, 2005.
- OLIVEIRA, F. A. Empresas de Vigilância No Sistema de Prestação de Serviços de Segurança Patrimonial Privada. PhD thesis, Escola Superior de Agricultura "Luıs de Queiroz", Universidade de São Paulo, Piracicaba. Doutorado em Economia Aplicada, 2004.
- OLIVEIRA, C. A. Criminalidade e o Tamanho das Cidades Brasileiras: Um Enfoque da Economia do Crime. Texto para Discussão, n°14, Passo Fundo RS, 2005.
- OLIVEIRA, C. A.; e JÚNIOR, L. S. M. Uma análise da criminalidade na Região do Corede Produção a partir da teoria econômica do crime (1997-2005). Análise, Porto Alegre, v.20, n.2, p. 65-83, jul./dez., 2009.
- OLIVEIRA NETO, Sandoval Bittencourt de. Quando mais é menos: Crítica aos indicadores de desempenho policial da política de integração da segurança pública do Estado do Pará. Editora Universitária: UFPA, Belém: NUMA/UFPA, 2005. (Papers).

- OMOTOR, D. G. Socio-Economic Determinants of Crime in Nigéria. Pakistan Journal of Social Sciences, v.6, p. 54-59, 2009.
- PEZZIN, L. Criminalidade urbana e crise econômica. São Paulo: IPE/USP, 1986.
- PEIXOTO, B. T.; MORO S. e ANDRADE, M. V. **Criminalidade na Região Metropolitana de Belo Horizonte: uma análise espacial.** Anais do XI Seminário sobre a Economia Mineira, 2009. Disponível em: <a href="http://www.cedeplar.ufmg.br/diamantina2004/textos/D04A016.pdf">http://www.cedeplar.ufmg.br/diamantina2004/textos/D04A016.pdf</a>>. Acesso: 10 de março de 2010.
- PEZZIN, L. E. Effects of family background on crime participation and criminal earnings: An empirical analysis of siblings. Estudos Econômicos, 34(3):487–514, 2004
- PEIXOTO, B.T. **Determinantes da criminalidade no município de Belo Horizonte.** Dissertação (Mestrado em Economia) Universidade Federal de Minas Gerais. Belo Horizonte, 2003.
- PIQUET, L. Determinantes do crime na América Latina: Rio de Janeiro e São Paulo. São Paulo: Universidade de São Paulo, 2000. (mimeo).
- RESIGNATO, A. J. Violent crime: a function of drug use or drug enforcement? Applied Economics, v. 32, p. 681-688, 2000.
- SHAW e McKay. **Juvenile Delinquency in Urban Areas.** University of Chicago Press, 1942.
- SAMPSON, R. J.; GROVES, W.B. Community structure and crime: testing social-desorganization theory. The American Journal of Sociology, v.94, n.4, p. 774-802, 1989.
- SANTOS, M. J. Dinâmica temporal da criminalidade: mais evidências sobre o "efeito inércia" nas taxas de crimes letais nos estados Brasileiros. Revista Economia, v. 11, n.1, p.169-193, 2009.
- SANTOS, M. J. e KASSOUF, A. L. Estudos econômicos das causas da criminalidade no Brasil: Evidências e Controvérsias. Economia, Brasília (DF), v.9, n.2, p.343-372, mai/ago., 2008.
- \_\_\_\_\_. Uma investigação econômica da influência do mercado de drogas ilícitas sobre a criminalidade brasileira. Revista Economia, maio/agosto, 2007.
- \_\_\_\_\_\_. Existe explicação econômica para o sub-registro de crimes contra a propriedade? Economia Aplicada, São Paulo, v.12, n. 1, p.5-27, janeiro-marco, 2008.
- SCALCO, Paulo R. Criminalidade violenta em Minas Gerais: Uma proposta de alocação de recursos em segurança pública. Universidade Federal de Viçosa, Viçosa MG, 2007.
- SCHELLING, T. C. What is the business of organized crime?. Journal of Public Law, v. 20, p. 71-84, 1971.

- SILVA, A. C. R. **Metodologia da Pesquisa Aplicada à Contabilidade.** 1ª Ed. Atlas, São Paulo, 2003.
- SOARES, R. R. Development, crime and punishment: Accounting for the international differences in crimes rates. Mimeo, University of Chicago, 1999.
- SOARES, R. R. Crime reporting as a measure of institutional development. Economic Development and Cultural Change, 52(4):851-871, 2004.
- SOARES, R. R. Development, crime and punishment: Accounting for the international differences in crime rates. Journal of Development Economics, 73:155-184, 2004.
- SUN, S. Measuring the relative efficiency of police precincts using data envelopment analysis. Socio-Economic Planning Sciences, v. 36, p. 51-71, 2002.
- SUTHERLAND, E.H. Development of the theory. In: SCHUESSLER, K. (Org.). Edwin H. Sutherland: on analyzing crime. Chicago: The University of Chicago Press, 1973.
- VARIAN, H. R. Microeconomia: Princípios Básicos. Rio de Janeiro: Campus, 2006.
- VERGARA, S. C. **Projetos e Relatórios de Pesquisa em Administração.** 6. Ed. São Paulo: Atlas, 2005.
- TANZI, V.; DAVOODI, H. Corruption, Public Investment, and Growth. IMF Working Paper, WP/97/139, 1997.
- WAISELFSZ, J.J. **MAPA DA VIOLÊNCIA, 2016.** Disponível em: <a href="https://www.mapadaviolencia.org.br/pdf2016/Mapa2016">https://www.mapadaviolencia.org.br/pdf2016/Mapa2016</a> armas web.pdf. Acesso: 26 de maio de 2018.
- WILSON, J. Q. e KELLING, G. The police and neighborhood safety: broken windows. Atlantic Monthly, mar, p. 29-38, 1982.
- WITTE, D. e TAUCHEN, H. Work and Crime: Na exploration using panel data. Econpapers. Vol.49, issue supplement, p. 155-76, 1994.

# **APENDICES**

## **APENDICE A1:**

Tabela 127: Eficiência do Estado do MARANHÃO e DMU, ano 2002.

|                                                  | nciencia do Estad          | O GO MAKAN     | nao e Divio, an                              |                                                               |               |
|--------------------------------------------------|----------------------------|----------------|----------------------------------------------|---------------------------------------------------------------|---------------|
| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                        | População      | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|                                                  | Açailândia                 | 93455          | 1                                            | 1                                                             | Alto          |
|                                                  | Alto Parnaíba              | 10140          | 0,01                                         | 0,007019368                                                   | Baixa         |
|                                                  | Arari                      | 26690          | 0,000833333                                  | 0,782144074                                                   | Alto          |
|                                                  | Benedito<br>Leite          | 5374           | 0,01                                         | 0,282686975                                                   | Baixa         |
|                                                  | Buriticupu                 | 55405          | 0,000344828                                  | 1                                                             | Alto          |
|                                                  | Cajapió                    | 9975           | 0,01                                         | 1                                                             | Alto          |
|                                                  | Carutapera                 | 19201          | 0,002541487                                  | 1                                                             | Alto          |
|                                                  | Central do<br>Maranhão     | 7645           | 0,053924872                                  | 1                                                             | Alto          |
|                                                  | Centro Novo<br>do Maranhão | 15098          | 0,012526342                                  | 0,241218747                                                   | Baixa         |
|                                                  | Coroatá                    | 57087          | 0,001111111                                  | 1                                                             | Alto          |
|                                                  | Davinópolis                | 12117          | 0,001111111                                  | 0,179091579                                                   |               |
|                                                  | Estreito                   | 23667          | 0,001512111                                  | 1                                                             | Alto          |
|                                                  | Feira Nova<br>do Maranhão  | 7532           | 0,01                                         | 0,507122714                                                   | Média         |
|                                                  | Fortuna                    | 14391          | 0,005481366                                  | 0,721338338                                                   | Média         |
|                                                  | Joao Lisboa                | 24836          | 0,01                                         | 1                                                             | Alto          |
| MA                                               | Lago da<br>Pedra           | 40962          | 0,000714286                                  | 1                                                             | Alto          |
|                                                  | Lago do<br>Junco           | 9770           | 1                                            | 0,619762614                                                   | Média         |
|                                                  | Lago dos<br>Rodrigues      | 8296           | 0,003333333                                  | 0,37402526                                                    | Baixa         |
|                                                  | Lajeado<br>Novo            | 5969           | 0,001432023                                  | 0,804100428                                                   | Alto          |
|                                                  | Loreto                     | 10142          | 0,003333333                                  | 0,180402991                                                   | Baixa         |
|                                                  | Miranda do<br>Norte        | 16511          | 0,009301953                                  | 0,207450182                                                   | Baixa         |
|                                                  | Nova Iorque                | 4461           | 1                                            | 1                                                             | Alto          |
|                                                  | Nova Olinda<br>do Maranhão | 15212          | 1                                            | 0,578023031                                                   | Média         |
|                                                  | Olinda nova<br>do Maranhão | 10113          | 0,003333333                                  | 0,294772805                                                   | Baixa         |
|                                                  | Paco do<br>Lumiar          | 83409          | 0,000384615                                  | 0,409407349                                                   | Baixa         |
|                                                  | Pedro do<br>Rosário        | 19738          | 0,005                                        | 1                                                             | Alto          |
|                                                  | Peri Mirim<br>Pio XII      | 13007<br>25421 | 0,004349945<br>0,005                         | 0,715783001<br>0,800866058                                    | Média<br>Alto |
| <del></del>                                      |                            |                |                                              |                                                               |               |

| -<br>Poção de<br>Pedras          | 21936          | 0,01                       | 0,54873939       | Média        |
|----------------------------------|----------------|----------------------------|------------------|--------------|
| Porto Franco                     | 17256          | 0,000666667                | 1                | Alto         |
| Presidente<br>Médici             | 5124           | 1                          | 1                | Alto         |
| Presidente<br>Sarney             | 14010          | 1                          | 0,532758052      | Média        |
| Raposa                           | 18300          | 1                          | 1                | Alto         |
| Santa<br>Filomena do<br>Maranhão | 4943           | 0,025590746                | 1                | Alto         |
| Santa Helena<br>Santa Inês       | 31791<br>73870 | 0,001666667<br>0,000588235 | 0,913986973<br>1 | Alto<br>Alto |
| Santa Luzia<br>do Paruá          | 19834          | 0,01                       | 0,512331964      | Média        |
| São Bento                        | 32615          | 0,0025                     | 0,81043092       | Alto         |
| Senador La<br>Rocque             | 15783          | 0,003333333                | 0,544989583      | Média        |
| Trizidela do<br>Vale             | 16535          | 0,005                      | 0,593605194      | Média        |
| Turiaçu                          | 32515          | 0,0025                     | 1                | Alto         |
| Turilândia                       | 17378          | 0,000833333                | 1                | Alto         |
| <br>Viana                        | 44684          | 0,018174206                | 1                | Alto         |

## **APENDICE A2:**

Tabela 128: Eficiência do Estado do PARÁ e DMU, ano 2002.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                         | População | Eficiência<br>Total Geral<br>(eftg) | Eficiência<br>por Tamanho<br>da População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|-----------------------------|-----------|-------------------------------------|---------------------------------------------------------------|---------------|
|                                                  | Afuá                        | 31503     | 0,01                                | 1                                                             | Alta          |
|                                                  | Bagre                       | 13679     | 0,019639075                         | 0,408577736                                                   | Baixa         |
|                                                  | Baião                       | 21339     | 0,00125                             | 0,087195833                                                   | Baixa         |
|                                                  | Bannach                     | 3656      | 1                                   | 1                                                             | Alta          |
|                                                  | Belém                       | 1322683   | 9,94036E-06                         | 1                                                             | Alta          |
| PA                                               | Brejo Grande<br>do Araguaia | 7686      | 0,040939034                         | 1                                                             | Alta          |
| rA                                               | Canaã dos<br>Carajás        | 11761     | 0,001666667                         | 0,116321742                                                   | Média         |
|                                                  | Cumaru do<br>Norte          | 6043      | 0,013908684                         | 0,225128192                                                   | Baixa         |
|                                                  | Curionópolis                | 17863     | 0,001428571                         | 1                                                             | Alta          |
|                                                  | Floresta do<br>Araguaia     | 14585     | 0,001135656                         | 0,595241932                                                   | Alta          |
|                                                  | _ Gurupá                    | 23967     | 0,021302496                         | 1                                                             | Alta          |

| Igarape-mii               |           | 0,000833333 | 1           | Média   |
|---------------------------|-----------|-------------|-------------|---------|
| Limoeiro d<br>Ajuru       | o 20214   | 0,01        | 1           | Alta    |
| Maracanã                  | 27991     | 0,01        | 1           | Alta    |
| Novo<br>Repartimen        | 44610     | 0,000222222 | 1           | Alta    |
| Ourilândia<br>Norte       | do 19637  | 0,001       | 0,227835383 | Baixa   |
| Palestina do<br>Para      | 7968      | 0,005       | 0,467335921 | Regular |
| Paragomina                | as 79988  | 0,000222222 | 1           | Alta    |
| Placas                    | 14026     | 0,01        | 1           | Alta    |
| Redenção                  | 65766     | 0,00025     | 1           | Alta    |
| Salinópolis               | 35717     | 0,0025      | 0,479121296 | Regular |
| São Francis<br>do Para    | sco 14798 | 0,0025      | 0,400351713 | Regular |
| São Geraldo<br>do Araguai | 7/531     | 1           | 1           | Alta    |
| São Joao do<br>Araguaia   | 13659     | 0,01        | 0,58228288  | Média   |
| Terra Santa               | 15390     | 0,01        | 1           | Alta    |
| Tome-açu                  | 48508     | 0,0004      | 1           | Alta    |
| Tucumã                    | 24033     | 0,0004      | 0,337791126 | Baixa   |
| Tucuruí                   | 77728     | 0,000108696 | 1           | Alta    |
| Ulianópolis               | 21740     | 0,001       | 0,176556694 | Baixa   |
| Vigia                     | 40756     | 0,001666667 | 1           | Alta    |

## **APENDICE A3:**

Tabela 129: Eficiência do Estado do TOCANTINS e DMU, ano 2002.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU            | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por<br>Tamanho da<br>População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|----------------|-----------|----------------------------------------------|------------------------------------------------------------------|---------------|
|                                                  | Almas          | 8647      | 1                                            | 1                                                                | Alta          |
|                                                  | Ananás         | 10980     | 0,003333333                                  | 0,287289738                                                      | Baixa         |
|                                                  | Araguacema     | 5611      | 0,005                                        | 1                                                                | Alta          |
|                                                  | Araguaçu       | 9234      | 0,002                                        | 0,555265805                                                      | Média         |
| TO                                               | Araguanã       | 4619      | 0,003524718                                  | 0,346557893                                                      | Regular       |
| 10                                               | Arapoema       | 6916      | 0,001428571                                  | 0,178661887                                                      | Baixa         |
|                                                  | Arraias        | 10977     | 0,001666667                                  | 0,661048659                                                      | Média         |
|                                                  | Augustinópolis | 13522     | 0,000769231                                  | 0,299768521                                                      | Regular       |
|                                                  | Babaçulândia   | 10593     | 0,005                                        | 0,480222308                                                      | Regular       |
|                                                  | Barrolandia    | 4916      | 0,003333333                                  | 0,358826357                                                      | Regular       |
|                                                  | Bernardo Sayao | 4601      | 0,01                                         | 0,137113158                                                      | Baixa         |

| Buriti do<br>Tocantins     | 7889       | 1           | 0,088367221 | Alta    |
|----------------------------|------------|-------------|-------------|---------|
| Cachoeirinha               | 2139       | 1           | 1           | Alta    |
| Campos Lindos              | 6113       | 1           | 1           | Alta    |
| Carmolandia                | 2054       | 0,009182372 | 0,430414175 | Regular |
| Carrasco bonito            | 3575       | 1           | 1           | Alta    |
| Chapada de Areia           | 1245       | 1           | 1           | Alta    |
| Chapada da                 |            |             | 1           | A 1.    |
| Natividade                 | 3400       | 1           | 1           | Alta    |
| Colinas do                 | 26202      | 0.00102014  | 1           | A 14 a  |
| Tocantins                  | 26202      | 0,00192914  | 1           | Alta    |
| Fatima                     | 3836       | 0,01        | 0,177785837 | Baixa   |
| Filadélfia                 | 8371       | 0,001428571 | 0,638392922 | Média   |
| Ipueiras                   | 1171       | 1           | 1           | Alta    |
| Itapiratins                | 3373       | 1           | 1           | Alta    |
| Itaporã do                 | 2284       | 1           | 1           | Alta    |
| Tocantins                  | 2201       | 1           | 1           | Titu    |
| Lagoa da confusão          | 7003       | 0,0025      | 0,209350902 | Baixa   |
| Lajeado                    | 2677       | 0,003743561 | 0,958839064 | Alta    |
| Miracema do<br>Tocantins   | 25524      | 0,001428571 | 1           | Alta    |
| Miranorte                  | 11990      | 0,000555556 | 0,305634486 | Regular |
| Monte do Carmo             | 4909       | 0,002       | 0,397806759 | Regular |
| Natividade                 | 9122       | 0,005       | 0,714551937 | Média   |
| Nova Olinda                | 9746       | 0,001666667 | 0,211292489 | Baixa   |
| Nova Rosalandia            | 3214       | 1           | 1           | Alta    |
| Paraná                     | 10300      | 1           | 0,351490981 | Regular |
| Pau d'arco                 | 4436       | 1           | 1           | Alta    |
| Pedro Afonso               | 9025       | 0,002       | 0,959346844 | Alta    |
| Peixe                      | 8739       | 1           | 1           | Alta    |
| Pindorama do<br>Tocantins  | 4629       | 1           | 1           | Alta    |
| Piraque                    | 3089       | 1           | 1           | Alta    |
| Pium                       | 5132       | 1           | 0,501865132 | Média   |
| Ponte Alta do<br>Tocantins | 6155       | 1           | 1           | Alta    |
| Porto Nacional             | 45603      | 0,000294118 | 1           | Alta    |
| Presidente<br>Kennedy      | 3799       | 1           | 1           | Alta    |
| Recursolândia              | 3354       | 1           | 1           | Alta    |
| Sampaio                    | 2701       | 1           | 1           | Alta    |
| Santa fé do                | 5022       | 0.00166667  | 0.124150242 | Daima   |
| Araguaia                   | 5923       | 0,001666667 | 0,134159343 | Baixa   |
| Santa Maria do             | 2294       | 1           | 1           | Alta    |
| Tocantins                  | <i>227</i> | 1           | 1           | Ana     |
| Santa Rosa do              | 4420       | 0,252896048 | 1           | Alta    |
| <br>Tocantins              | -          | ,           |             |         |
|                            |            |             |             |         |

| Santa Terez<br>Tocantins  | a do 2202  | 1     | 1           | Alta    |
|---------------------------|------------|-------|-------------|---------|
| São Félix do<br>Tocantins | 1362       | 1     | 1           | Alta    |
| São Sebastia<br>Tocantins | ão do 3915 | 1     | 0,294723243 | Regular |
| Xambioá                   | 11984      | 0,002 | 0,47271248  | Regular |

## **APENDICE B1:**

Tabela 130: Eficiência do Estado do MARANHÃO e DMU, ano 2003.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                        | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por<br>Tamanho da<br>População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|----------------------------|-----------|----------------------------------------------|------------------------------------------------------------------|---------------|
|                                                  | Açailândia                 | 95838     | 0,000111111                                  | 1                                                                | Alta          |
|                                                  | Alto Alegre do<br>Maranhão | 21812     | 0,001111111                                  | 1                                                                | Alta          |
|                                                  | Alto Parnaíba              | 10124     | 1                                            | 1                                                                | Alta          |
|                                                  | Amarante do<br>Maranhão    | 33815     | 0,0025                                       | 0,759363673                                                      | Alta          |
|                                                  | Anajatuba                  | 21861     | 1                                            | 0,4486502                                                        | Regular       |
|                                                  | Arari                      | 26840     | 0,001111111                                  | 1                                                                | Alta          |
|                                                  | Bacurituba                 | 4848      | 0,005                                        | 0,260479488                                                      | Regular       |
|                                                  | Benedito leite             | 5414      | 1                                            | 0,005362012                                                      | Baixa         |
|                                                  | Buriticupu                 | 57422     | 0,000238095                                  | 1                                                                | Alta          |
|                                                  | Cajapió                    | 10140     | 0,005                                        | 0,425207323                                                      | Regular       |
|                                                  | Carutapera                 | 19468     | 0,001428571                                  | 1                                                                | Alta          |
|                                                  | Central do<br>Maranhão     | 7858      | 1                                            | 1                                                                | Alta          |
| MA                                               | Centro novo do<br>Maranhão | 15350     | 0,005                                        | 0,609171846                                                      | Média         |
|                                                  | Coroatá                    | 57742     | 0,000714286                                  | 1                                                                | Alta          |
|                                                  | Davinópolis                | 12044     | 0,003333333                                  | 0,426331466                                                      | Regular       |
|                                                  | Estreito                   | 24009     | 0,001428571                                  | 0,34536216                                                       | Regular       |
|                                                  | Feira nova do<br>Maranhão  | 7527      | 0,005                                        | 0,010978325                                                      | Baixa         |
|                                                  | Formosa da serra negra     | 15581     | 1                                            | 0,976724464                                                      | Alta          |
|                                                  | Fortuna                    | 14296     | 0,0025                                       | 0,344989178                                                      | Regular       |
|                                                  | Joao Lisboa                | 21448     | 1                                            | 0,177005376                                                      | Baixa         |
|                                                  | Lago da pedra              | 41221     | 0,000833333                                  | 0,913067313                                                      | Alta          |
|                                                  | Lago do junco              | 9741      | 1                                            | 0,27648124                                                       | Regular       |
|                                                  | Lago dos<br>Rodrigues      | 8227      | 1                                            | 0,195858557                                                      | Baixa         |
|                                                  | Lajeado novo               | 6086      | 0,01                                         | 0,598955677                                                      | Média         |
|                                                  | Loreto                     | 10196     | 0,005                                        | 0,036144802                                                      | Baixa         |

| Maracaçumé                    | 15743 | 0,003333333 | 0,267989631 | Regular |
|-------------------------------|-------|-------------|-------------|---------|
| Matinha                       | 20418 | 1           | 0,316865896 | Regular |
| Miranda do norte              | 16692 | 1           | 1           | Alta    |
| Nova Iorque                   | 4423  | 1           | 0,61380952  | Média   |
| Nova Olinda do<br>Maranhão    | 15004 | 1           | 0,565172078 | Média   |
| Olinda nova do<br>Maranhão    | 10106 | 1           | 0,226434046 | Baixa   |
| Paco do lumiar                | 86760 | 0,000769231 | 0,351247077 | Regular |
| Paraibano                     | 18494 | 0,001111111 | 1           | Alta    |
| Pedro do rosário              | 20566 | 0,01        | 1           | Alta    |
| Penalva                       | 30611 | 0,002       | 0,940542938 | Alta    |
| Peri mirim                    | 12977 | 0,01        | 0,986283635 | Alta    |
| Pio XII                       | 26054 | 0,005       | 1           | Alta    |
| Poção de pedras               | 21730 | 0,01        | 1           | Alta    |
| Porto franco                  | 17449 | 0,001       | 1           | Alta    |
| Presidente Médici             | 5127  | 1           | 1           | Alta    |
| Presidente Sarney             | 14146 | 1           | 0,426868659 | Regular |
| Raposa                        | 18863 | 1           | 1           | Alta    |
| Sambaíba                      | 5113  | 0,01        | 0,020218125 | Baixa   |
| Santa Filomena<br>do maranhão | 5071  | 1           | 0,406454451 | Regular |
| Santa helena                  | 32223 | 0,0025      | 0,671081862 | Média   |
| Santa Inês                    | 74294 | 0,000416667 | 0,855953796 | Alta    |
| Santa Luzia do<br>Paruá       | 19730 | 1           | 0,315085742 | Regular |
| São Bento                     | 32984 | 0,000833333 | 0,938180098 | Alta    |
| São Roberto                   | 4468  | 1           | 1           | Alta    |
| Senador la                    | 19068 | 0,005       | 0,451517524 | Dagular |
| Rocque                        | 19008 | 0,003       | 0,431317324 | Regular |
| Trizidela do vale             | 16597 | 1           | 0,091520292 | Baixa   |
| Turiaçu                       | 33084 | 0,001428571 | 1           | Alta    |
| Turilândia                    | 17446 | 0,005       | 1           | Alta    |
| Viana                         | 44913 | 0,001111111 | 1           | Alta    |

## **APENDICE B2:**

Tabela 131: Eficiência do Estado do PARÁ e DMU, ano 2003.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                         | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por<br>Tamanho da<br>População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|-----------------------------|-----------|----------------------------------------------|------------------------------------------------------------------|---------------|
|                                                  | Abaetetuba                  | 125055    | 0,000285714                                  | 1                                                                | Alta          |
| PA                                               | Afuá                        | 32431     | 0,01                                         | 1                                                                | Alta          |
|                                                  | Belém                       | 1342202   | 9,94036E-06                                  | 1                                                                | Alta          |
|                                                  | Brejo grande do<br>Araguaia | 7789      | 0,001428571                                  | 1                                                                | Alta          |

| Canaã dos Carajás       | 12151  | 0,000625    | 1           | Alta    |
|-------------------------|--------|-------------|-------------|---------|
| Castanhal               | 144485 | 0,00015873  | 1           | Alta    |
| Curionópolis            | 17110  | 0,000714286 | 1           | Alta    |
| Dom Eliseu              | 44201  | 0,001666667 | 1           | Alta    |
| Floresta do<br>Araguaia | 14725  | 1           | 1           | Alta    |
| Igarape-miri            | 55919  | 0,000714286 | 1           | Alta    |
| Juruti                  | 33643  | 0,01        | 1           | Alta    |
| Limoeiro do<br>Ajuru    | 20516  | 0,01        | 1           | Alta    |
| Novo<br>repartimento    | 45906  | 0,00015873  | 1           | Alta    |
| Ourilândia do           | 19714  | 0,001428571 | 1           | Alta    |
| norte                   | 81630  | 0,00016129  | 1           | Alta    |
| Paragominas<br>Tome-acu | 49081  | 0,00010129  | 1           | Alta    |
| Tucuruí                 | 79551  | 9,09091E-05 | 1           | Alta    |
| São Geraldo do          | 19331  | 9,09091L-03 | 1           | Ana     |
| Araguaia                | 27477  | 0,00125     | 0,921306621 | Alta    |
| Redenção                | 66933  | 0,000204082 | 0,917338373 | Alta    |
| Anapu                   | 8164   | 0,001       | 0,884355809 | Alta    |
| Terra santa             | 15760  | 0,01        | 0,83009019  | Alta    |
| Capanema                | 58953  | 0,003333333 | 0,82714883  | Alta    |
| São Francisco do        | 15054  | ,           |             | A 1.    |
| Pará                    | 15054  | 0,0025      | 0,763463109 | Alta    |
| São João do             | 14314  | 0,001428571 | 0,739965549 | Média   |
| Araguaia                |        |             | ,           |         |
| Vigia                   | 41026  | 0,01        | 0,656183383 | Média   |
| Cumaru do norte         | 6073   | 0,0025      | 0,582281578 | Média   |
| Maracanã                | 28186  | 0,01        | 0,536334457 | Média   |
| Salinópolis             | 36770  | 0,001428571 | 0,528479965 | Média   |
| Bagre                   | 13666  | 0,003333333 | 0,519731771 | Média   |
| Itupiranga              | 56146  | 0,000277778 | 0,460892837 | Regular |
| Palestina do para       | 8165   | 0,01        | 0,450543478 | Regular |
| Uruará                  | 51320  | 0,000588235 | 0,403597713 | Regular |
| Medicilândia            | 21901  | 0,00125     | 0,355823458 | Regular |
| Tucumã                  | 23440  | 0,000384615 | 0,326316492 | Regular |
| Gurupá                  | 24370  | 0,01        | 0,261263622 | Regular |
| Ulianópolis             | 22894  | 0,000909091 | 0,122624687 | Baixa   |
| Baião                   | 21442  | 0,01        | 0,102635229 | Baixa   |
| Bannach                 | 3599   | 0,005       | 0,018755566 | Baixa   |

## **APENDICE B3:**

Tabela 132: Eficiência do Estado de TOCANTINS e DMU, ano 2003.

|             |     |           | ,           |            |               |
|-------------|-----|-----------|-------------|------------|---------------|
| Unidade     |     | Donulosão | Eficiência  | Eficiência |               |
| Federada da | DMU | População | Total Geral | por        | Classificação |
| Amazônia    |     |           | (eftg)      | Tamanho da |               |

| Legal (UF) |                              |       |             | População<br>(eftfp) |       |
|------------|------------------------------|-------|-------------|----------------------|-------|
|            | Aragominas                   | 7194  | 0,01        | 1                    | Alta  |
|            | Araguacema                   | 5702  | 1           | 1                    | Alta  |
|            | Araguatins                   | 27646 | 0,0025      | 1                    | Alta  |
|            | Cachoeirinha                 | 2192  | 0,01        | 1                    | Alta  |
|            | Carmolandia                  | 2075  | 0,002       | 1                    | Alta  |
|            | Carrasco bonito              | 3740  | 1           | 1                    | Alta  |
|            | Chapada de areia             | 1234  | 1           | 1                    | Alta  |
|            | Chapada da natividade        | 3458  | 1           | 1                    | Alta  |
|            | Colinas do<br>Tocantins      | 26620 | 0,000454545 | 1                    | Alta  |
|            | Ipueiras                     | 1173  | 1           | 1                    | Alta  |
|            | Itapiratins                  | 3417  | 1           | 1                    | Alta  |
|            | Miracema do<br>Tocantins     | 26026 | 0,005       | 1                    | Alta  |
|            | Nova Rosalandia              | 3225  | 1           | 1                    | Alta  |
|            | Peixe                        | 8727  | 0,001428571 | 1                    | Alta  |
|            | Ponte alta do Tocantins      | 6146  | 0,002       | 1                    | Alta  |
|            | Presidente<br>Kennedy        | 3818  | 1           | 1                    | Alta  |
|            | Recursolândia                | 3454  | 0,003333333 | 1                    | Alta  |
| TO         | Sampaio                      | 2654  | 1           | 1                    | Alta  |
|            | Santa Tereza do<br>Tocantins | 2243  | 1           | 1                    | Alta  |
|            | São Felix do<br>Tocantins    | 1405  | 1           | 1                    | Alta  |
|            | São Sebastião do Tocantins   | 4030  | 0,005       | 1                    | Alta  |
|            | Sucupira                     | 1376  | 1           | 1                    | Alta  |
|            | Tocantins                    | 5846  | 1           | 1                    | Alta  |
|            | Xambioá                      | 12134 | 0,001111111 | 1                    | Alta  |
|            | Esperantina                  | 8438  | 0,01        | 0,799094115          | Alta  |
|            | Pedro Afonso                 | 9023  | 0,001428571 | 0,791111805          | Alta  |
|            | Pium                         | 4942  | 0,01        | 0,762665706          | Alta  |
|            | Nova Olinda                  | 9914  | 0,003333333 | 0,752406954          | Alta  |
|            | Aliança do<br>Tocantins      | 6308  | 0,01        | 0,732204498          | Média |
|            | Filadélfia                   | 8441  | 0,0025      | 0,72891457           | Média |
|            | Araguaçu                     | 9181  | 0,0025      | 0,703683166          | Média |
|            | Paraná                       | 10247 | 1           | 0,682111495          | Média |
|            | Porto nacional               | 45887 | 0,000285714 | 0,665578254          | Média |
|            | Miranorte                    | 12077 | 0,002       | 0,660210305          | Média |
|            | Santa rosa do<br>Tocantins   | 4468  | 0,01        | 0,619703097          | Média |
|            | Lagoa da<br>confusão         | 7391  | 0,001111111 | 0,566884286          | Média |

| Babaçulândia    | 10716 | 0,002       | 0,548524019 | Média   |
|-----------------|-------|-------------|-------------|---------|
| Novo acordo     | 3241  | 0,01        | 0,521657669 | Média   |
| Palmeirante     | 3633  | 1           | 0,49861654  | Regular |
| Barrolandia     | 4839  | 0,01        | 0,498382205 | Regular |
| Campos lindos   | 6334  | 0,005       | 0,497424648 | Regular |
| Fatima          | 3831  | 0,003333333 | 0,478252925 | Regular |
| Araguanã        | 4817  | 0,0025      | 0,469830333 | Regular |
| Arraias         | 10974 | 0,005       | 0,446171576 | Regular |
| Lajeado         | 2831  | 0,01        | 0,441664227 | Regular |
| Natividade      | 9241  | 1           | 0,425303123 | Regular |
| Sitio novo do   | 10212 | 0,005       | 0,38678667  | Regular |
| Tocantins       | 10212 | 0,003       | 0,38078007  | Regulai |
| Ananás          | 11197 | 0,001666667 | 0,317734759 | Regular |
| Santa Maria do  | 2325  | 0,01        | 0,270234772 | Regular |
| Tocantins       |       |             | ,           | _       |
| Augustinópolis  | 13781 | 0,000588235 | 0,235126494 | Baixa   |
| Pindorama do    | 4604  | 1           | 0,23130205  | Baixa   |
| Tocantins       | 4004  | 1           | 0,23130203  | Duixu   |
| Santa fé do     | 6117  | 0,001666667 | 0,226228684 | Baixa   |
| Araguaia        |       |             | ,           |         |
| Monte do Carmo  | 4777  | 0,0025      | 0,207449978 | Baixa   |
| Novo jardim     | 2345  | 1           | 0,200263428 | Baixa   |
| Arapoema        | 6865  | 0,002       | 0,180144558 | Baixa   |
| Buriti do       | 7911  | 0,0025      | 0,163607192 | Baixa   |
| Tocantins       |       | ,           |             |         |
| Bernardo Sayao  | 4624  | 0,005       | 0,158658846 | Baixa   |
| Bandeirantes do | 2622  | 0,01        | 0,107418143 | Baixa   |
| Tocantins       |       | ,           | ,           |         |
| Pau d'arco      | 4483  | 0,01        | 0,093427256 | Baixa   |
| ão própria      |       |             |             |         |

## **APENDICE C1:**

Tabela 133: Eficiência do Estado de MARANHÃO e DMU, ano 2004.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                        | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por<br>Tamanho da<br>População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|----------------------------|-----------|----------------------------------------------|------------------------------------------------------------------|---------------|
|                                                  | Açailândia                 | 100841    | 0,000156                                     | 1                                                                | Alta          |
|                                                  | Alto alegre do<br>Maranhão | 22910     | 0,003432                                     | 1                                                                | Alta          |
|                                                  | Bequimão                   | 18840     | 0,01                                         | 1                                                                | Alta          |
| MA                                               | Cachoeira grande           | 8167      | 1                                            | 1                                                                | Alta          |
|                                                  | Carutapera                 | 20030     | 0,01                                         | 1                                                                | Alta          |
|                                                  | Central do<br>Maranhão     | 8305      | 1                                            | 1                                                                | Alta          |
|                                                  | Centro novo do<br>Maranhão | 15880     | 1                                            | 1                                                                | Alta          |

| ~                          | 20100  |          |         |               |
|----------------------------|--------|----------|---------|---------------|
| Cururupu                   | 38108  | 0,005705 | 1       | Alta          |
| Estreito                   | 24728  | 0,001    | 1       | Alta          |
| Matinha                    | 21207  | 1        | 1       | Alta          |
| Miranda do norte           | 17070  | 1        | 1       | Alta          |
| Paraibano                  | 18920  | 0,01     | 1       | Alta          |
| Pedro do Rosário           | 22304  | 1        | 1       | Alta          |
| Penalva                    | 30818  | 0,0025   | 1       | Alta          |
| Porto franco               | 17854  | 0,00125  | 1       | Alta          |
| Santa luzia do<br>Paruá    | 19512  | 1        | 1       | Alta          |
| São Bento                  | 33760  | 0,0025   | 1       | Alta          |
| São Roberto                | 4513   | 1        | 1       | Alta          |
| Turiaçu                    | 34279  | 0,001667 | 1       | Alta          |
| Lago da pedra              | 41764  | 0,001111 | 0,97294 | Alta          |
| Buriticupu                 | 61657  | 0,000333 | 0,86389 | Alta          |
| Viana                      | 45395  | 0,001429 | 0,85849 | Alta          |
| Santa Inês                 | 75188  | 0,000313 | 0,84664 | Alta          |
| Lajeado novo               | 6331   | 1        | 0,84008 | Alta          |
| Coroatá                    | 59116  | 0,000476 | 0,80501 | Alta          |
| Arari                      | 27156  | *        |         |               |
|                            |        | 0,001667 | 0,77174 | Alta<br>Média |
| Raposa                     | 20044  | 1        | 0,72763 |               |
| Nova Iorque                | 4342   | 1        | 0,71982 | Média         |
| Davinópolis                | 11890  | 0,014163 | 0,69964 | Média         |
| Santa helena               | 33131  | 0,002    | 0,69466 | Média         |
| Pio XII                    | 27384  | 1        | 0,69045 | Média         |
| Amarante do<br>Maranhão    | 35494  | 0,01     | 0,66589 | Média         |
| Nova Olinda do<br>Maranhão | 14568  | 0,01     | 0,62431 | Média         |
| Turilândia                 | 17589  | 0,001667 | 0,56348 | Média         |
| Cajapió                    | 10484  | 1        | 0,49881 | Regular       |
| Bacabeira                  | 11126  | 0,001111 | 0,48547 | Regular       |
| Paco do lumiar             | 93796  | 0,000256 | 0,47895 | Regular       |
| São José de                |        | ,        | ,       | _             |
| Ribamar                    | 126271 | 0,00027  | 0,47303 | Regular       |
| Senador la                 |        |          |         |               |
| Rocque                     | 18654  | 1        | 0,44472 | Regular       |
| Amapá do                   |        |          |         |               |
| Maranhão                   | 6261   | 1        | 0,4077  | Regular       |
| Joao Lisboa                | 21647  | 0,0025   | 0,39835 | Regular       |
| Maracaçumé                 | 16327  | 0,003333 | 0,38256 | Regular       |
| Poção de pedras            | 21299  | 0,01     | 0,36899 | Regular       |
| Lago dos                   |        | ,        |         | •             |
| Rodrigues                  | 8083   | 0,01     | 0,34622 | Regular       |
| Santa Filomena             |        |          |         |               |
| do Maranhão                | 5340   | 1        | 0,31731 | Regular       |
| Sambaíba                   | 5014   | 0,01     | 0,27845 | Regular       |
| Presidente Sarney          | 14431  | 1        | 0,26143 | Regular       |
| Peri mirim                 | 12915  | 0,003333 | 0,23291 | Baixa         |
| Anajatuba                  | 22504  | 1        | 0,22499 | Baixa         |
| 1 majaraba                 | 223UT  | 1        | 0,227)  | Daixa         |

| Lago do junco<br>Arame     | 9680<br>27750 | 0,01<br>0,000556 | 0,17037<br>0,15217 | Baixa<br>Baixa |
|----------------------------|---------------|------------------|--------------------|----------------|
| Trizidela do vale          | 16727         | 1                | 0,14851            | Baixa          |
| Fortaleza dos<br>Nogueiras | 12257         | 0,01             | 0,10649            | Baixa          |
| Loreto                     | 10311         | 0,01             | 0,09907            | Baixa          |
| Fortuna                    | 14096         | 1                | 0,09099            | Baixa          |
| Apicum-acu                 | 12471         | 1                | 0,05               | Baixa          |
| Alto Parnaíba              | 10091         | 0,005            | 0,04983            | Baixa          |
| Feira nova do<br>Maranhão  | 7516          | 0,01             | 0,03158            | Baixa          |
| Benedito leite             | 5498          | 1                | 0,00461            | Baixa          |
| Olinda nova do<br>Maranhão | 10091         | 1                | 0,00283            | Baixa          |

# **APENDICE C2:**

Tabela 134: Eficiência do Estado de PARÁ e DMU, ano 2004.

| Unidade                               | Efficiencia do Estado d    | e i i i i i i i i i i i i i i i i i i i | 10, uno 2004.                                | Eficiência                                         |               |  |
|---------------------------------------|----------------------------|-----------------------------------------|----------------------------------------------|----------------------------------------------------|---------------|--|
| Federada da<br>Amazônia<br>Legal (UF) | DMU                        | População                               | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | por<br>Tamanho da<br>População<br>( <i>eftfp</i> ) | Classificação |  |
|                                       | Abaetetuba                 | 129300                                  | 0,000213                                     | 1                                                  | Alta          |  |
|                                       | Afuá                       | 34534                                   | 0,01                                         | 1                                                  | Alta          |  |
|                                       | Bannach                    | 3469                                    | 0,001667                                     | 1                                                  | Alta          |  |
|                                       | Belém                      | 1386482                                 | 1,18E-05                                     | 1                                                  | Alta          |  |
|                                       | Canaã dos Carajás          | 13035                                   | 0,000769                                     | 1                                                  | Alta          |  |
|                                       | Capanema                   | 60272                                   | 0,01                                         | 1                                                  | Alta          |  |
|                                       | Castanhal                  | 151668                                  | 0,000172                                     | 1                                                  | Alta          |  |
|                                       | Dom Eliseu                 | 47561                                   | 0,001429                                     | 1                                                  | Alta          |  |
|                                       | Igarape-miri               | 58303                                   | 0,001111                                     | 1                                                  | Alta          |  |
|                                       | Jacundá                    | 46151                                   | 0,000147                                     | 1                                                  | Alta          |  |
|                                       | Limoeiro do Ajuru          | 21200                                   | 0,005                                        | 1                                                  | Alta          |  |
| PA                                    | Melgaço                    | 24520                                   | 0,002                                        | 1                                                  | Alta          |  |
| 1 A                                   | Novo repartimento          | 48846                                   | 0,000204                                     | 1                                                  | Alta          |  |
|                                       | Palestina do para          | 8611                                    | 0,0025                                       | 1                                                  | Alta          |  |
|                                       | Paragominas                | 85354                                   | 0,000127                                     | 1                                                  | Alta          |  |
|                                       | São Geraldo do<br>Araguaia | 27356                                   | 0,00125                                      | 1                                                  | Alta          |  |
|                                       | Tucuruí                    | 83689                                   | 0,00008                                      | 1                                                  | Alta          |  |
|                                       | Vigia                      | 41637                                   | 0,01                                         | 1                                                  | Alta          |  |
|                                       | Viseu                      | 52893                                   | 0,01                                         | 1                                                  | Alta          |  |
|                                       | Juruti                     | 35401                                   | 0,01                                         | 0,98828                                            | Alta          |  |
|                                       | Redenção                   | 69581                                   | 0,000147                                     | 0,98329                                            | Alta          |  |
|                                       | Tome-acu                   | 50382                                   | 0,00037                                      | 0,95809                                            | Alta          |  |
|                                       | Abel Figueiredo            | 6798                                    | 0,0025                                       | 0,90368                                            | Alta          |  |
|                                       | Santana do                 | 39318                                   | 0,000294                                     | 0,84864                                            | Alta          |  |

| Araguaia                    |       |          |         |         |
|-----------------------------|-------|----------|---------|---------|
| Anapu                       | 7271  | 0,000769 | 0,81616 | Alta    |
| Primavera                   | 10647 | 0,01     | 0,78744 | Alta    |
| Terra santa                 | 16601 | 0,003333 | 0,77533 | Alta    |
| Curionópolis                | 15401 | 0,000714 | 0,6726  | Média   |
| Brejo grande do<br>Araguaia | 8022  | 0,000833 | 0,67251 | Média   |
| São domingos do capim       | 30863 | 0,003333 | 0,63378 | Média   |
| Bagre                       | 13636 | 0,01     | 0,62846 | Média   |
| Maracanã                    | 28628 | 0,01     | 0,59006 | Média   |
| Salinópolis                 | 39157 | 0,000667 | 0,52627 | Média   |
| Rio Maria                   | 12712 | 0,0025   | 0,52595 | Média   |
| São Francisco do para       | 15636 | 0,002    | 0,52503 | Média   |
| Itupiranga                  | 60814 | 0,000238 | 0,51627 | Média   |
| Capitão Poço                | 52055 | 0,000714 | 0,50094 | Média   |
| Uruará                      | 55720 | 0,000833 | 0,47264 | Regular |
| Gurupá                      | 25285 | 0,01     | 0,42281 | Regular |
| Cumaru do norte             | 6142  | 0,001429 | 0,37724 | Regular |
| São João do<br>Araguaia     | 15801 | 0,0025   | 0,3713  | Regular |
| Baião                       | 21673 | 0,000909 | 0,3279  | Regular |
| Ourilândia do norte         | 19889 | 0,000769 | 0,27664 | Regular |
| Ulianópolis                 | 25511 | 0,000667 | 0,26589 | Regular |
| Floresta do<br>Araguaia     | 15042 | 0,000833 | 0,13904 | Baixa   |

## **APENDICE C3:**

Tabela 135: Eficiência do Estado de TOCANTINS e DMU, ano 2004.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                       | População | Eficiência<br>Total Geral<br>(eftg) | Eficiência<br>por<br>Tamanho da<br>População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|---------------------------|-----------|-------------------------------------|------------------------------------------------------------------|---------------|
|                                                  | Aliança do<br>Tocantins   | 6366      | 0,01                                | 1                                                                | Alta          |
|                                                  | Angico                    | 2894      | 1                                   | 1                                                                | Alta          |
|                                                  | Aragominas                | 7645      | 1                                   | 1                                                                | Alta          |
| TO                                               | Araguanã                  | 5095      | 1                                   | 1                                                                | Alta          |
| 10                                               | Bandeirantes do Tocantins | 2628      | 1                                   | 1                                                                | Alta          |
|                                                  | Buriti do<br>Tocantins    | 7942      | 0,5                                 | 1                                                                | Alta          |
|                                                  | Cachoeirinha              | 2268      | 0,01                                | 1                                                                | Alta          |
|                                                  | Campos lindos             | 6643      | 1                                   | 1                                                                | Alta          |

| C 1 1'                  | 2105         | 1        | 1       | A 1.    |
|-------------------------|--------------|----------|---------|---------|
| Carmolandia             | 2105         | 1        | 1       | Alta    |
| Caseara                 | 4054         | 1<br>1   | 1       | Alta    |
| Calinas de              | 1218         | 1        | 1       | Alta    |
| Colinas do              | 27207        | 0,000588 | 1       | Alta    |
| Tocantins               |              |          |         |         |
| Crixas do<br>Tocantins  | 1497         | 1        | 1       | Alta    |
|                         | 8800         | 1        | 1       | Alta    |
| Esperantina<br>Ipueiras | 8800<br>1177 | 0,012957 | 1       | Alta    |
| Luzinópolis             | 2302         | 0,012937 | 1       | Alta    |
| Mateiros                | 1831         | 1        | 1       | Alta    |
| Miracema do             | 1031         | 1        | 1       | Alta    |
| Tocantins               | 26729        | 0,001    | 1       | Alta    |
| Novo acordo             | 3323         | 1        | 1       | Alta    |
| Novo jardim             | 2432         | 1        | 1       | Alta    |
| Palmeirante             | 3643         | 1        | 1       | Alta    |
| Peixe                   | 8711         | 0,001429 | 1       | Alta    |
| Pium                    | 4677         | 0,001429 | 1       | Alta    |
| Ponte alta do           | 4077         | 1        | 1       | Alla    |
| Tocantins               | 6135         | 1        | 1       | Alta    |
| Porto nacional          | 46285        | 0,000294 | 1       | Alta    |
| Presidente              | 40263        | 0,000294 | 1       | Alla    |
| Kennedy                 | 3844         | 1        | 1       | Alta    |
| Santa rosa do           |              |          |         |         |
| Tocantins               | 4536         | 0,003595 | 1       | Alta    |
| Santa Tereza do         |              |          |         |         |
| Tocantins               | 2301         | 1        | 1       | Alta    |
| São Félix do            |              |          |         |         |
| Tocantins               | 1465         | 1        | 1       | Alta    |
| São Sebastião do        |              |          |         |         |
| Tocantins               | 4190         | 0,005    | 1       | Alta    |
| Silvanópolis            | 4212         | 1        | 1       | Alta    |
| Sucupira                | 1331         | 1        | 1       | Alta    |
| Tocantinia              | 5872         | 0,012173 | 1       | Alta    |
| Nova Rosalandia         | 3240         | 0,002223 | 0,94165 | Alta    |
| Araguacema              | 5830         | 0,005398 | 0,92797 | Alta    |
| Pedro Afonso            | 9021         | 0,003333 | 0,87976 | Alta    |
| Filadélfia              | 8541         | 0,001111 | 0,70114 | Média   |
| Araguatins              | 28373        | 0,005    | 0,69175 | Média   |
| Natividade              | 9407         | 0,000769 | 0,66984 | Média   |
| Paraná                  | 10171        | 0,01     | 0,60052 | Média   |
| Xambioá                 | 12345        | 0,001    | 0,49852 | Regular |
| Arraias                 | 10970        | 0,003333 | 0,49565 | Regular |
| Babaçulândia            | 10888        | 0,001111 | 0,432   | Regular |
| Lagoa da confusão       | 7934         | 0,003333 | 0,42481 | Regular |
| Lajeado                 | 3047         | 0,005    | 0,37691 | Regular |
| Itapiratins             | 3479         | 0,002133 | 0,36095 | Regular |
| Miranorte               | 12200        | 0,000714 | 0,34691 | Regular |
| Araguaçu                | 9108         | 0,005    | 0,33352 | Regular |
| Carrasco bonito         | 3973         | 1        | 0,3204  | Regular |
|                         |              | _        | - ,- =  | 0       |

| Marilândia do<br>Tocantins  | 3257  | 1        | 0,31489 | Regular |
|-----------------------------|-------|----------|---------|---------|
| Barrolandia                 | 4731  | 0,001429 | 0,29474 | Regular |
| Nova Olinda                 | 10148 | 0,0025   | 0,27887 | Regular |
| Sitio novo do<br>Tocantins  | 10534 | 0,005    | 0,25535 | Regular |
| Fatima                      | 3824  | 0,003333 | 0,25221 | Regular |
| Santa Maria do<br>Tocantins | 2369  | 0,01     | 0,25173 | Regular |
| Ananás                      | 11501 | 0,002    | 0,25088 | Regular |
| Sampaio                     | 2589  | 1        | 0,24116 | Baixa   |
| Pindorama do<br>Tocantins   | 4568  | 1        | 0,22866 | Baixa   |
| Santa fé do<br>Araguaia     | 6387  | 0,001429 | 0,21092 | Baixa   |
| Pau d'arco                  | 4548  | 1        | 0,19829 | Baixa   |
| Monte do Carmo              | 4593  | 0,003333 | 0,17634 | Baixa   |
| Augustinópolis              | 14143 | 0,000909 | 0,17133 | Baixa   |
| Recursolândia               | 3594  | 0,003333 | 0,15024 | Baixa   |
| Arapoema                    | 6794  | 0,002    | 0,11003 | Baixa   |
| Bernardo Sayao              | 4656  | 0,005    | 0,09909 | Baixa   |
| Axixá do<br>Tocantins       | 8314  | 1        | 0,03782 | Baixa   |
| Aguiarnopolis               | 3449  | 1        | 0,0322  | Baixa   |

## **APENDICE D1:**

Tabela 136: Eficiência do Estado de MARANHÃO e DMU, ano 2005.

|  | Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                        | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por<br>Tamanho da<br>População<br>( <i>eftfp</i> ) | Classificação |
|--|--------------------------------------------------|----------------------------|-----------|----------------------------------------------|------------------------------------------------------------------|---------------|
|  |                                                  | Açailândia                 | 103609    | 9,09E-05                                     | 1                                                                | Alta          |
|  |                                                  | Alto alegre do<br>Maranhão | 23518     | 0,002                                        | 1                                                                | Alta          |
|  |                                                  | Balsas                     | 71763     | 0,000244                                     | 1                                                                | Alta          |
|  |                                                  | Bequimão                   | 18649     | 1                                            | 1                                                                | Alta          |
|  |                                                  | Buriti bravo               | 21636     | 0,002                                        | 1                                                                | Alta          |
|  | MA                                               | Carutapera                 | 20341     | 1                                            | 1                                                                | Alta          |
|  | WIA                                              | Central do<br>Maranhão     | 8553      | 1                                            | 1                                                                | Alta          |
|  |                                                  | Centro do<br>Guilherme     | 6915      | 1                                            | 1                                                                | Alta          |
|  |                                                  | Davinópolis                | 11805     | 1                                            | 1                                                                | Alta          |
|  |                                                  | Lago da pedra              | 42064     | 0,000476                                     | 1                                                                | Alta          |
|  |                                                  | Miranda do norte           | 17280     | 0,00155                                      | 1                                                                | Alta          |
|  |                                                  | Paraibano                  | 19156     | 0,00125                                      | 1                                                                | Alta          |
|  |                                                  |                            |           |                                              |                                                                  |               |

| Pedro do Rosário                  | 23266  | 0,005     | 1        | Alta    |
|-----------------------------------|--------|-----------|----------|---------|
| Penalva                           | 30933  | 0,000909  | 1        | Alta    |
| Porto franco                      | 18078  | 0,003333  | 1        | Alta    |
| Santa luzia do                    | 19391  | 0,00392   | 1        | Alta    |
| Paruá                             | 19391  | 0,00392   | 1        | Alla    |
| Serrano do                        | 4756   | 1         | 1        | Alta    |
| Maranhão                          | 4730   | 1         | 1        | Alla    |
| Turilândia                        | 17668  | 0,005     | 1        | Alta    |
| Cururupu                          | 39072  | 0,000625  | 0,888324 | Alta    |
| Nova Iorque                       | 4298   | 0,01      | 0,86496  | Alta    |
| Codó                              | 114496 | 0,000244  | 0,82236  | Alta    |
| São Bento                         | 34189  | 0,01      | 0,770904 | Alta    |
| Maracaçumé                        | 16650  | 0,01      | 0,739652 | Média   |
| Pio XII                           | 28120  | 1         | 0,725164 | Média   |
| Arari                             | 27331  | 0,001429  | 0,68705  | Média   |
| Raposa                            | 20698  | 0,001     | 0,684408 | Média   |
| Turiaçu                           | 34940  | 0,0025    | 0,67052  | Média   |
| Santa Inês                        | 75681  | 0,000263  | 0,625827 | Média   |
| Nova Olinda do                    |        | ,         | ,        |         |
| Maranhão                          | 14326  | 1         | 0,577228 | Média   |
| São Mateus do                     |        |           |          |         |
| Maranhão                          | 37721  | 0,000556  | 0,570542 | Média   |
| Viana                             | 45661  | 0,001     | 0,5485   | Média   |
| Lago dos                          |        | ,         | ,        |         |
| rodrigues                         | 8004   | 1         | 0,534707 | Média   |
| Senador la                        | 10121  |           | 0.740077 | 2.5.4.1 |
| Rocque                            | 18424  | 1         | 0,529875 | Média   |
| Santa helena                      | 33633  | 0,001667  | 0,526669 | Média   |
| Coroatá                           | 59877  | 0,000667  | 0,50491  | Média   |
| Amarante do                       |        | ,         | ŕ        |         |
| Maranhão                          | 36423  | 0,000714  | 0,487672 | Regular |
| São José de                       | 100110 | 0.00000   | 0.470004 |         |
| Ribamar                           | 130448 | 0,000303  | 0,450294 | Regular |
| Lajeado novo                      | 6467   | 1         | 0,44806  | Regular |
| Estreito                          | 25125  | 0,000476  | 0,444052 | Regular |
| São Roberto                       | 4538   | 1         | 0,437653 | Regular |
| Buriticupu                        | 64000  | 0,000244  | 0,436575 | Regular |
| Bacabeira                         | 11261  | 0,000714  | 0,434317 | Regular |
| Paco do lumiar                    | 97689  | 0,000278  | 0,401301 | Regular |
| Lago do junco                     | 9646   | 0,00278   | 0,36347  | Regular |
| Lago do junco                     | 10374  | 0,015603  | 0,348997 | Regular |
| Joao Lisboa                       | 21757  | 0,013003  | 0,340497 | Regular |
| Santa Filomena                    | 21737  | 0,002     | 0,340497 | Regulai |
| do Maranhão                       | 5489   | 1         | 0,33646  | Regular |
| Peri mirim                        | 12881  | 1         | 0,281126 | Regular |
|                                   | 10510  |           | 0,273418 | Regular |
| Presidente Vargas                 | 8340   | 0,01<br>1 | *        | _       |
| Cachoeira grande<br>Fortaleza dos | 0340   | 1         | 0,254881 | Regular |
|                                   | 12469  | 0,01      | 0,232234 | Baixa   |
| Nogueiras<br>Caianió              | 10675  | 1         | 0.220246 | Daire   |
| Cajapió                           | 10675  | 1         | 0,230246 | Baixa   |

| Olinda nova do<br>Maranhão | 10083 | 0,002953 | 0,201954 | Baixa |
|----------------------------|-------|----------|----------|-------|
| Sambaíba                   | 4959  | 0,003333 | 0,198058 | Baixa |
| Presidente Sarney          | 14588 | 1        | 0,175567 | Baixa |
| Trizidela do vale          | 16799 | 0,0025   | 0,157391 | Baixa |
| Apicum-acu                 | 12775 | 1        | 0,149757 | Baixa |
| Centro novo do<br>Maranhão | 16173 | 0,005595 | 0,14902  | Baixa |
| Anajatuba                  | 22860 | 0,003333 | 0,0633   | Baixa |
| Arame                      | 27287 | 0,000714 | 0,050106 | Baixa |
| Alto Parnaíba              | 10073 | 1        | 0,046896 | Baixa |
| Maranhãozinho              | 10179 | 1        | 0,01616  | Baixa |
| Feira nova do<br>Maranhão  | 7510  | 1        | 0,01502  | Baixa |

## **APENDICE D2:**

Tabela 137: Eficiência do Estado de PARÁ e DMU, ano 2005.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                        | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por<br>Tamanho da<br>População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|----------------------------|-----------|----------------------------------------------|------------------------------------------------------------------|---------------|
|                                                  | Abaetetuba                 | 131158    | 0,000476                                     | 1                                                                | Alta          |
|                                                  | Aveiro                     | 18426     | 0,005                                        | 1                                                                | Alta          |
|                                                  | Bannach                    | 3412      | 0,002                                        | 1                                                                | Alta          |
|                                                  | Belém                      | 1405871   | 7,97E-06                                     | 1                                                                | Alta          |
|                                                  | Canaã dos Carajás          | 13421     | 0,000742                                     | 1                                                                | Alta          |
|                                                  | Curionópolis               | 14653     | 0,000625                                     | 1                                                                | Alta          |
|                                                  | Gurupá                     | 25685     | 0,01                                         | 1                                                                | Alta          |
|                                                  | Igarape-miri               | 59346     | 0,001429                                     | 1                                                                | Alta          |
|                                                  | Jacundá                    | 47176     | 0,000114                                     | 1                                                                | Alta          |
|                                                  | Juruti                     | 36170     | 0,01                                         | 1                                                                | Alta          |
|                                                  | Marapanim                  | 27619     | 0,009135                                     | 1                                                                | Alta          |
| PA                                               | Melgaço                    | 25153     | 0,01                                         | 1                                                                | Alta          |
|                                                  | Novo                       |           |                                              |                                                                  | Alta          |
|                                                  | Repartimento               | 50133     | 0,005                                        | 1                                                                |               |
|                                                  | Paragominas                | 86984     | 0,000208                                     | 1                                                                | Alta          |
|                                                  | Primavera                  | 10817     | 0,01                                         | 1                                                                | Alta          |
|                                                  | São João do<br>Araguaia    | 16452     | 0,0025                                       | 1                                                                | Alta          |
|                                                  | São Sebastião da boa vista | 19379     | 0,14118                                      | 1                                                                | Alta          |
|                                                  | Tucuruí                    | 85499     | 6,99E-05                                     | 1                                                                | Alta          |
|                                                  | Ulianópolis                | 26656     | 0,000556                                     | 1                                                                | Alta          |
|                                                  | Vigia                      | 41904     | 0,000330                                     | 1                                                                | Alta          |
|                                                  | Limoeiro do                | 21499     | 0,001                                        | 0,951643                                                         | Alta          |
|                                                  | Limocho do                 | ム1マノノ     | 0,01                                         | 0,751073                                                         | Tita          |

| Ajuru             |        |          |          |         |
|-------------------|--------|----------|----------|---------|
| Dom Eliseu        | 49031  | 0,000769 | 0,941117 | Alta    |
| Tome-acu          | 50951  | 0,000345 | 0,939594 | Média   |
| Cumaru do norte   | 6172   | 0,000909 | 0,871058 | Média   |
| Augusto Côrrea    | 34695  | 0,005    | 0,81943  | Média   |
| Afuá              | 35455  | 0,002    | 0,801707 | Média   |
| Brejo grande do   |        |          |          | Média   |
| Araguaia          | 8124   | 0,005    | 0,773197 | Media   |
| Terra santa       | 16968  | 0,003333 | 0,742262 | Média   |
| Palestina do para | 8806   | 0,005    | 0,736965 | Média   |
| Santana do        |        |          |          | Média   |
| Araguaia          | 40800  | 0,000345 | 0,730865 | Media   |
| São Geraldo do    |        |          |          | Média   |
| Araguaia          | 27303  | 0,001111 | 0,728126 | Media   |
| Curuca            | 29705  | 0,001    | 0,707584 | Média   |
| São Francisco do  |        |          |          | Média   |
| Para              | 15890  | 0,01     | 0,626532 | Media   |
| Redenção          | 70739  | 0,000167 | 0,60753  | Média   |
| Novo progresso    | 37067  | 0,000161 | 0,595773 | Média   |
| Salinópolis       | 40202  | 0,001111 | 0,572107 | Regular |
| Maracanã          | 28822  | 0,001429 | 0,55516  | Regular |
| Moju              | 60809  | 1        | 0,554683 | Regular |
| Garrafão do norte | 26569  | 0,003333 | 0,525928 | Regular |
| Capanema          | 60849  | 0,003333 | 0,490533 | Regular |
| Castanhal         | 154811 | 0,00008  | 0,463056 | Regular |
| Ourilândia do     |        |          |          | Regular |
| norte             | 19965  | 0,000455 | 0,455259 | Regulai |
| Abel Figueiredo   | 6952   | 0,001111 | 0,445369 | Regular |
| Viseu             | 53223  | 0,01     | 0,416415 | Regular |
| Anapu             | 6880   | 0,005    | 0,407878 | Regular |
| Mae do rio        | 23002  | 0,0025   | 0,333766 | Regular |
| Uruará            | 57645  | 0,000909 | 0,282716 | Regular |
| Baião             | 21775  | 0,001667 | 0,263456 | Regular |
| Capitão Poço      | 52474  | 0,000833 | 0,214278 | Regular |
| Rio Maria         | 11836  | 0,001667 | 0,210897 | Regular |
| Bagre             | 13623  | 0,005    | 0,013125 | Baixa   |

## **APENDICE D3:**

Tabela 138: Eficiência do Estado do TOCANTINS e DMU, ano 2005.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU        | População | Eficiência<br>Total Geral<br>(eftg) | Eficiência<br>por<br>Tamanho da<br>População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|------------|-----------|-------------------------------------|------------------------------------------------------------------|---------------|
| ТО                                               | Angico     | 2897      | 1                                   | 1                                                                | Alta          |
|                                                  | Aragominas | 8243      | 1                                   | 1                                                                | Alta          |

| Araguaçu          | 9011   | 1        | 1        | Alta   |
|-------------------|--------|----------|----------|--------|
| Araguaína         | 127521 | 4,88E-05 | 1        | Alta   |
| Bandeirantes do   | 2636   | 1        | 1        | Alta   |
| Tocantins         | 2030   | 1        | 1        | Tita   |
| Buriti do         | 7983   | 0,004331 | 1        | Alta   |
| Tocantins         | 1903   | 0,004331 | 1        | Alla   |
| Cachoeirinha      | 2368   | 1        | 1        | Alta   |
| Carmolandia       | 2145   | 1        | 1        | Alta   |
| Carrasco bonito   | 4281   | 1        | 1        | Alta   |
| Chapada de areia  | 1197   | 1        | 1        | Alta   |
| Dois irmãos do    | 60.42  | 0.01     | 1        | A 1.   |
| Tocantins         | 6843   | 0,01     | 1        | Alta   |
| Esperantina       | 9280   | 0,00668  | 1        | Alta   |
| Ipueiras          | 1181   | 1        | 1        | Alta   |
| Lavandeira        | 1220   | 1        | 1        | Alta   |
| Miracema do       |        |          |          |        |
| Tocantins         | 27661  | 0,000833 | 1        | Alta   |
| Nova Olinda       | 10460  | 1        | 1        | Alta   |
| Novo alegre       | 2528   | 1        | 1        | Alta   |
| Novo jardim       | 2546   | 1        | 1        | Alta   |
| Paraná            | 10071  | 0,01686  | 1        | Alta   |
| Ponte alta do bom | 10071  | 0,01000  | 1        | Titu   |
| Jesus             | 4296   | 1        | 1        | Alta   |
| Ponte alta do     |        |          |          |        |
| Tocantins         | 6120   | 1        | 1        | Alta   |
| Porto nacional    | 46814  | 0,000333 | 1        | Alta   |
| Presidente        | 70017  | 0,000333 | 1        | Tita   |
| Kennedy           | 3878   | 1        | 1        | Alta   |
| Rio dos bois      | 2747   | 1        | 1        | Alta   |
| Santa Maria do    | 2171   | 1        | 1        | Tita   |
| Tocantins         | 2427   | 1        | 1        | Alta   |
| Santa rosa do     |        |          |          |        |
| Tocantins         | 4625   | 1        | 1        | Alta   |
| São Bento do      |        |          |          |        |
| Tocantins         | 3018   | 1        | 1        | Alta   |
| São Felix do      |        |          |          |        |
| Tocantins         | 1545   | 1        | 1        | Alta   |
| São Sebastião do  |        |          |          |        |
| Tocantins         | 4403   | 1        | 1        | Alta   |
|                   | 5006   | 1        | 1        | A 14 a |
| Tocantinia        | 5906   | 1        |          | Alta   |
| Xambioá           | 12626  | 0,000909 | 0,93123  | Alta   |
| Axixá do          | 8104   | 1        | 0,83576  | Alta   |
| Tocantins         |        |          |          |        |
| Colinas do        | 27984  | 0,000556 | 0,743451 | Média  |
| Tocantins         | 20220  | 1        | 0.700004 | 3.671  |
| Araguatins        | 29338  | 1        | 0,709894 | Média  |
| Sampaio           | 2502   | 1        | 0,681823 | Média  |
| Novo acordo       | 3431   | 0,003333 | 0,666374 | Média  |
| Palmeirópolis     | 5660   | 0,002    | 0,650319 | Média  |
| Aliança do        | 6443   | 0,005    | 0,600165 | Média  |

| Tocantins       |       |          |          |         |
|-----------------|-------|----------|----------|---------|
| Caseara         | 4214  | 0,01     | 0,594644 | Média   |
| Pium            | 4325  | 0,005    | 0,574878 | Média   |
| Araguacema      | 6000  | 0,0025   | 0,542304 | Média   |
| Santa Tereza do |       | ,        | ,        |         |
| Tocantins       | 2377  | 0,01     | 0,536324 | Média   |
| Lajeado         | 3335  | 0,0025   | 0,510169 | Média   |
| Nova Rosalandia | 3260  | 0,003333 | 0,504236 | Média   |
| Natividade      | 9627  | 0,003333 | 0,504099 | Média   |
| Babaçulândia    | 11116 | 0,001667 | 0,494434 | Regular |
| Sitio novo do   |       |          | ,        | _       |
| Tocantins       | 10960 | 1        | 0,48167  | Regular |
| Arraias         | 10964 | 0,01     | 0,455235 | Regular |
| Barrolandia     | 4588  | 0,01     | 0,437816 | Regular |
| Miranorte       | 12362 | 0,000909 | 0,426949 | Regular |
| Pedro Afonso    | 9019  | 0,001429 | 0,391217 | Regular |
| Campos lindos   | 7053  | 0,01     | 0,387388 | Regular |
| Filadélfia      | 8672  | 1        | 0,383988 | Regular |
| Pindorama do    | 4520  | 0.01     | 0.200104 | Dagulan |
| Tocantins       | 4520  | 0,01     | 0,380194 | Regular |
| Lagoa da        | 9655  | 0.001667 | 0.276069 | Dagulan |
| confusão        | 8655  | 0,001667 | 0,376068 | Regular |
| Luzinópolis     | 2417  | 0,01     | 0,363982 | Regular |
| Araguanã        | 5463  | 0,01     | 0,35718  | Regular |
| Peixe           | 8690  | 0,001111 | 0,349033 | Regular |
| Sucupira        | 1272  | 1        | 0,31834  | Regular |
| Itapiratins     | 3561  | 1        | 0,314631 | Regular |
| Cristalândia    | 6931  | 0,002    | 0,299236 | Regular |
| Recursolândia   | 3781  | 0,01     | 0,283668 | Regular |
| Augustinópolis  | 14625 | 0,000333 | 0,280359 | Regular |
| Silvanópolis    | 4003  | 0,01     | 0,279217 | Regular |
| Palmeirante     | 3656  | 0,01     | 0,274598 | Regular |
| Itacajá         | 6606  | 0,01     | 0,270834 | Regular |
| Rio sono        | 5522  | 0,003333 | 0,265869 | Regular |
| Ananás          | 11905 | 0,001429 | 0,241502 | Baixo   |
| Marilândia do   | 3422  | 1        | 0,225624 | Baixo   |
| Tocantins       |       |          | ,        |         |
| Pau d'arco      | 4635  | 0,01     | 0,223639 | Baixo   |
| Santa Fe do     | 6747  | 0,01     | 0,214512 | Baixo   |
| Araguaia        |       | ,        | ,        |         |
| Fatima          | 3814  | 0,002    | 0,192117 | Baixo   |
| Arapoema        | 6699  | 0,01     | 0,180315 | Baixo   |
| Bernardo Sayao  | 4699  | 0,005    | 0,157682 | Baixo   |
| Monte do Carmo  | 4348  | 1        | 0,144008 | Baixo   |
| Crixas do       | 1543  | 1        | 0,137904 | Baixo   |
| Tocantins       |       |          | ,        |         |
| Aguiarnopolis   | 3573  | 1        | 0,097231 | Baixo   |
| Mateiros        | 1906  | 1        | 0,004813 | Baixo   |

#### **APENDICE E1:**

Tabela 139: Eficiência do Estado do MARANHÃO e DMU, ano 2006.

| Tabela 139: Eficiência do Estado do MARANHAO e DMU, ano 2006. |                            |           |                                              |                                                                  |               |  |
|---------------------------------------------------------------|----------------------------|-----------|----------------------------------------------|------------------------------------------------------------------|---------------|--|
| Unidade<br>Federada da<br>Amazônia<br>Legal (UF)              | DMU                        | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por<br>Tamanho da<br>População<br>( <i>eftfp</i> ) | Classificação |  |
|                                                               | Açailândia                 | 106357    | 0,000136986                                  | 1                                                                | Alta          |  |
|                                                               | Alto alegre do             | 24121     | 0.00166667                                   | 4                                                                | 4.1.          |  |
|                                                               | Maranhão                   | 24121     | 0,001666667                                  | 1                                                                | Alta          |  |
|                                                               | Anajatuba                  | 23214     | 0,002                                        | 1                                                                | Alta          |  |
|                                                               | Arari                      | 27504     | 0,00125                                      | 1                                                                | Alta          |  |
|                                                               | Bacabal                    | 96883     | 0,000169492                                  | 1                                                                | Alta          |  |
|                                                               | Bacabeira                  | 11395     | 1                                            | 1                                                                | Alta          |  |
|                                                               | Bequimão                   | 18461     | 1                                            | 1                                                                | Alta          |  |
|                                                               | Carutapera                 | 20650     | 0,001111111                                  | 1                                                                | Alta          |  |
|                                                               | Esperantinópolis           | 22498     | 0,002                                        | 1                                                                | Alta          |  |
|                                                               | Estreito                   | 25520     | 0,002                                        | 1                                                                | Alta          |  |
|                                                               | Itaipava do Grajaú         | 13081     | 1                                            | 1                                                                | Alta          |  |
|                                                               | Joao Lisboa                | 21866     | 0,005                                        | 1                                                                | Alta          |  |
|                                                               | Lima campos                | 10967     | 0,003333333                                  | 1                                                                | Alta          |  |
|                                                               | Maracaçumé                 | 16971     | 1                                            | 1                                                                | Alta          |  |
|                                                               | Miranda do norte           | 17487     | 0,001428571                                  | 1                                                                | Alta          |  |
|                                                               | Monção                     | 26546     | 0,003333333                                  | 1                                                                | Alta          |  |
|                                                               | Palmeirândia               | 18520     | 0,005                                        | 1                                                                | Alta          |  |
|                                                               | Pedro do Rosário           | 24220     | 0,005                                        | 1                                                                | Alta          |  |
|                                                               | Penalva                    | 31047     | 0,000666667                                  | 1                                                                | Alta          |  |
| MA                                                            | Pio XII                    | 28850     | 0,0025                                       | 1                                                                | Alta          |  |
|                                                               | Porto franco               | 18300     | 0,0023                                       | 1                                                                | Alta          |  |
|                                                               | Presidente Vargas          | 10767     | 0,000388233                                  | 1                                                                | Alta          |  |
|                                                               | Santa Luzia                |           |                                              |                                                                  |               |  |
|                                                               | Santa Luzia Santa Luzia do | 82854     | 0,0003125                                    | 1                                                                | Alta          |  |
|                                                               | Paruá                      | 19271     | 0,000909091                                  | 1                                                                | Alta          |  |
|                                                               | São Bento                  | 34615     | 0,000833333                                  | 1                                                                | Alta          |  |
|                                                               | Senador la Rocque          | 18196     | 1                                            | 1                                                                | Alta          |  |
|                                                               | Serrano do<br>Maranhão     | 3972      | 1                                            | 1                                                                | Alta          |  |
|                                                               | Lago do junco              | 9612      | 0,003333333                                  | 0,978138313                                                      | Alta          |  |
|                                                               | Cururupu                   | 40029     | 0,000714286                                  | 0,928122048                                                      | Alta          |  |
|                                                               | Sambaíba                   | 4905      | 1                                            | 0,907629092                                                      | Alta          |  |
|                                                               | São Mateus do<br>Maranhão  | 38235     | 0,000909091                                  | 0,904451269                                                      | Alta          |  |
|                                                               | Viana                      | 45925     | 0,000714286                                  | 0,891342408                                                      | Alta          |  |
|                                                               | São domingos do            | 37028     | 0,002                                        | 0,857431188                                                      | Alta          |  |
|                                                               | Maranhão                   |           | ,                                            | ,                                                                |               |  |
|                                                               | Codó                       | 115098    | 0,000357143                                  | 0,840568809                                                      | Alta          |  |
|                                                               | Turiaçu                    | 35597     | 0,005                                        | 0,833124057                                                      | Alta          |  |
|                                                               | Turilândia                 | 17747     | 1                                            | 0,817953864                                                      | Alta          |  |

| Buriticupu        | 66326       | 0,001428571 | 0,702929774 | Média      |
|-------------------|-------------|-------------|-------------|------------|
| Lago da pedra     | 42362       | 0,001111111 | 0,702263951 | Média      |
| Balsas            | 73848       | 0,000333333 | 0,686200442 | Média      |
| Coroatá           | 60632       | 0,000434783 | 0,682904016 | Média      |
| Presidente Sarney | 14745       | 1           | 0,60493432  | Média      |
| Paraibano         | 19390       | 0,00125     | 0,60052218  | Média      |
| Santa Inês        | 76173       | 0,000181818 | 0,592001528 | Média      |
| Amarante do       | 27245       | 0.00222222  | 0.570171015 | N/24:-     |
| Maranhão          | 37345       | 0,003333333 | 0,579171915 | Média      |
| Lajeado novo      | 6602        | 1           | 0,556544877 | Média      |
| Nova Iorque       | 4254        | 0,01        | 0,536454351 | Média      |
| Raposa            | 21347       | 0,001428571 | 0,51895264  | Média      |
| Paco do lumiar    | 101554      | 0,00025641  | 0,479391211 | Regular    |
| São Raimundo das  | 15404       | 0.00166667  |             | •          |
| mangabeiras       | 15404       | 0,001666667 | 0,394270452 | Regular    |
| Lago dos          | <b>5025</b> | 4           | 0.202505045 | <b>5</b> 1 |
| Rodrigues         | 7925        | 1           | 0,392707065 | Regular    |
| Centro do         | 7050        | 0.005       | 0.227026106 | D 1        |
| Guilherme         | 7052        | 0,005       | 0,327926186 | Regular    |
| Arame             | 26827       | 0,000769231 | 0,292072149 | Regular    |
| Apicum-acu        | 13076       | 1           | 0,236560376 | Baixa      |
| Buriti bravo      | 21671       | 0,003333333 | 0,214596992 | Baixa      |
| Boa vista do      |             | ,           |             | ъ.         |
| Gurupi            | 6331        | 0,005       | 0,196347544 | Baixa      |
| Maranhãozinho     | 10491       | 0,0025      | 0,19538444  | Baixa      |
| Governador        | 9227        | 0.005       | 0.100201660 | Doivo      |
| Archer            | 8237        | 0,005       | 0,189391668 | Baixa      |
| Centro novo do    | 16464       | 0,001666667 | 0,18681444  | Baixa      |
| Maranhão          | 10404       | 0,001000007 | 0,10001444  | Daixa      |
| Central do        | 8799        | 1           | 0,177871664 | Baixa      |
| Maranhão          | 0199        | 1           | 0,177871004 | Daixa      |
| Olinda nova do    | 10075       | 1           | 0,175929038 | Baixa      |
| Maranhão          | 10073       | 1           | 0,173929036 | Daixa      |
| Loreto            | 10437       | 0,01        | 0,168068936 | Baixa      |
| Peri mirim        | 12846       | 0,005       | 0,118330145 | Baixa      |
| Cachoeira grande  | 8512        | 0,01        | 0,067723992 | Baixa      |
| Trizidela do vale | 16870       | 1           | 0,048443844 | Baixa      |
| Alto Parnaíba     | 10054       | 0,01        | 0,047584705 | Baixa      |
| Santo Antônio dos | 1/106       | 0.01        | 0.04514207  | Doivo      |
| Lopes             | 14126       | 0,01        | 0,04514307  | Baixa      |
| Feira nova do     | 7505        | 1           | 0.000425204 | Doivo      |
| Maranhão          | 7505        | 1           | 0,009435294 | Baixa      |
| ão própria        |             |             |             |            |

## **APENDICE E2:**

Tabela 140: Eficiência do Estado do PARÁ e DMU, ano 2006.

|             |     |           | ,           |            |               |
|-------------|-----|-----------|-------------|------------|---------------|
| Unidade     | DMU | População | Eficiência  | Eficiência | Classificação |
| Federada da | DMO |           | Total Geral | por        | Ciassificação |

| Amazônia   |                              |         | (eftg)                     | Tamanho da                 |        |
|------------|------------------------------|---------|----------------------------|----------------------------|--------|
| Legal (UF) |                              |         | (9,-8)                     | População                  |        |
| -8 (- )    |                              |         |                            | (eftfp)                    |        |
|            | Abaetetuba                   | 133316  | 0,000294118                | 1                          | Alta   |
|            | Afuá                         | 36524   | 0,003333333                | 1                          | Alta   |
|            | Almeirim                     | 34338   | 0,000769231                | 1                          | Alta   |
|            | Anapu                        | 6425    | 0,001                      | 1                          | Alta   |
|            | Augusto Corrêa               | 34998   | 0,01                       | 1                          | Alta   |
|            | Aveiro                       | 18949   | 0,01                       | 1                          | Alta   |
|            | Belém                        | 1428368 | 1,10254E-05                | 1                          | Alta   |
|            | Canaã dos Carajás            | 13870   | 0,000909091                | 1                          | Alta   |
|            | Jacundá                      | 48368   | 0,000192308                | 1                          | Alta   |
|            | Limoeiro do                  | 21947   | 0.01                       | 1                          | A 14 o |
|            | Ajuru                        | 21847   | 0,01                       | 1                          | Alta   |
|            | Melgaço                      | 25887   | 0,01                       | 1                          | Alta   |
|            | Moju                         | 62223   | 0,0003125                  | 1                          | Alta   |
|            | Novo                         | 51627   | 0,000136986                | 1                          | Alta   |
|            | repartimento                 | 31027   | 0,000130980                | 1                          | Alta   |
|            | Parauapebas                  | 95225   | 8,19672E-05                | 1                          | Alta   |
|            | Primavera                    | 11014   | 0,01                       | 1                          | Alta   |
|            | São João do                  | 17207   | 0,001428571                | 1                          | Alta   |
|            | Araguaia                     | 17207   | 0,001420371                | 1                          |        |
|            | Terra santa                  | 17395   | 0,003333333                | 1                          | Alta   |
|            | Trairão                      | 17892   | 0,003333333                | 1                          | Alta   |
|            | Tucuruí                      | 87602   | 8,06452E-05                | 1                          | Alta   |
| PA         | Pacajá                       | 31179   | 0,000333333                | 0,98094957                 | Alta   |
|            | Capanema                     | 61519   | 0,000454545                | 0,974496524                | Alta   |
|            | Igarapé-acu                  | 36164   | 0,001428571                | 0,934093965                | Alta   |
|            | Dom Eliseu                   | 50739   | 0,00025641                 | 0,930800492                | Alta   |
|            | Garrafão do norte            | 26991   | 0,002                      | 0,903983083                | Alta   |
|            | Juruti                       | 37064   | 0,01                       | 0,869076743                | Alta   |
|            | Santana do<br>Araguaia       | 42523   | 0,000217391                | 0,866729345                | Alta   |
|            | Paragominas                  | 88877   | 0,00010101                 | 0,797284309                | Alta   |
|            | Ulianópolis                  | 27987   | 0,000384615                | 0,774047733                | Alta   |
|            | Redenção                     | 72085   | 0,000166667                | 0,764853826                | Alta   |
|            | Anajás                       | 21307   | 0,005                      | 0,724299566                | Média  |
|            | Braganca                     | 103751  | 0,0005                     | 0,695217737                | Média  |
|            | Marapanim                    | 28141   | 0,00125                    | 0,695160511                | Média  |
|            | Palestina do para            | 9033    | 0,001666667                | 0,690107241                | Média  |
|            | Itaituba                     | 96515   | 0,000217391                | 0,658808329                | Média  |
|            | Castanhal                    | 158462  | 8,54701E-05                | 0,654103164                | Média  |
|            | Santa Maria das<br>barreiras | 13710   | 0,01                       | 0,647285454                | Média  |
|            | Novo progresso               | 39245   | 0,000714286                | 0,6377464                  | Média  |
|            | Viseu                        | 53607   | 0,003333333                | 0,630465528                | Média  |
|            | São Geraldo do               | 27242   | ,                          | ,                          | Média  |
|            | Araguaia<br>Vigia            | 42214   | 0,000666667<br>0,000666667 | 0,616667949<br>0,615007195 | Média  |
|            | . 6                          |         | -,-,-,-,-,                 | .,                         |        |

| Tome-acu                    | 51612 | 0,000263158 | 0,578416155 | Média   |
|-----------------------------|-------|-------------|-------------|---------|
| Maracanã                    | 29046 | 0,00125     | 0,55987816  | Média   |
| Capitão Poço                | 52960 | 0,000434783 | 0,532527165 | Média   |
| Jacareacanga                | 34683 | 0,005       | 0,489840404 | Regular |
| Abel Figueiredo             | 7131  | 0,001428571 | 0,478672362 | Regular |
| Curuca                      | 30343 | 0,000833333 | 0,470879564 | Regular |
| Cumaru do norte             | 6207  | 0,000909091 | 0,449425113 | Regular |
| São Francisco do<br>Para    | 16186 | 0,01        | 0,446805006 | Regular |
| Baião                       | 21893 | 0,001666667 | 0,327352268 | Regular |
| Mae do rio                  | 22580 | 0,000625    | 0,288549373 | Regular |
| Gurupá                      | 26150 | 0,01        | 0,258719534 | Regular |
| Colares                     | 12328 | 0,005       | 0,205993902 | Baixa   |
| Ourilândia do norte         | 20054 | 0,000769231 | 0,201022768 | Baixa   |
| Rio Maria                   | 10818 | 0,000769231 | 0,192783778 | Baixa   |
| Brejo grande do<br>Araguaia | 8243  | 0,005       | 0,174032909 | Baixa   |
| Bannach                     | 3345  | 0,002       | 0,035178625 | Baixa   |

## **APENDICE E3:**

Tabela 141: Eficiência do Estado de TOCANTINS e DMU, ano 2006.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                         | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por<br>Tamanho da<br>População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|-----------------------------|-----------|----------------------------------------------|------------------------------------------------------------------|---------------|
|                                                  | Angico                      | 2898      | 1                                            | 1                                                                | Alta          |
|                                                  | Aragominas                  | 8614      | 1                                            | 1                                                                | Alta          |
|                                                  | Araguaçu                    | 8951      | 0,0025                                       | 1                                                                | Alta          |
|                                                  | Araguaína                   | 130105    | 5,71429E-05                                  | 1                                                                | Alta          |
|                                                  | Araguatins                  | 29936     | 0,000769231                                  | 1                                                                | Alta          |
|                                                  | Bandeirantes do Tocantins   | 2641      | 1                                            | 1                                                                | Alta          |
|                                                  | Bom Jesus do Tocantins      | 2204      | 1                                            | 1                                                                | Alta          |
| ТО                                               | Buriti do<br>Tocantins      | 8008      | 1                                            | 1                                                                | Alta          |
|                                                  | Cachoeirinha                | 2430      | 1                                            | 1                                                                | Alta          |
|                                                  | Campos lindos               | 7307      | 1                                            | 1                                                                | Alta          |
|                                                  | Carmolandia                 | 2170      | 0,010388935                                  | 1                                                                | Alta          |
|                                                  | Carrasco bonito             | 4472      | 1                                            | 1                                                                | Alta          |
|                                                  | Chapada de areia            | 1184      | 1                                            | 1                                                                | Alta          |
|                                                  | Divinópolis do<br>Tocantins | 6137      | 1                                            | 1                                                                | Alta          |
|                                                  | Dois irmãos do<br>Tocantins | 6766      | 0,0025                                       | 1                                                                | Alta          |

|                   | 4404   |             |             |         |
|-------------------|--------|-------------|-------------|---------|
| Ipueiras          | 1184   | 1           | 1           | Alta    |
| Itapiratins       | 3613   | 1           | 1           | Alta    |
| Lajeado           | 3513   | 1           | 1           | Alta    |
| Lavandeira        | 1222   | 1           | 1           | Alta    |
| Luzinópolis       | 2488   | 1           | 1           | Alta    |
| Mateiros          | 1953   | 0,01        | 1           | Alta    |
| Nova Rosalandia   | 3273   | 1           | 1           | Alta    |
| Novo acordo       | 3498   | 0,01        | 1           | Alta    |
| Novo alegre       | 2574   | 1           | 1           | Alta    |
| Novo jardim       | 2617   | 1           | 1           | Alta    |
| Ponte alta do bom | 4247   | 0.005020574 | 1           | Alta    |
| Jesus             | 4247   | 0,005838574 | 1           | Alla    |
| Porto nacional    | 47141  | 0,000285714 | 1           | Alta    |
| Rio dos bois      | 2833   | 1           | 1           | Alta    |
| Santa Maria do    | 2462   | 1           | 1           | A 1.    |
| Tocantins         | 2463   | 1           | 1           | Alta    |
| Santa rosa do     | 4.601  | 1           | 1           | A 1.    |
| Tocantins         | 4681   | 1           | 1           | Alta    |
| Santa Tereza do   | 2.42.4 | 4           | 4           | 4.4.    |
| Tocantins         | 2424   | 1           | 1           | Alta    |
| São Bento do      |        |             |             |         |
| Tocantins         | 2889   | 1           | 1           | Alta    |
| São Felix do      |        |             |             | Alta    |
| Tocantins         | 1595   | 1           | 1           | 1 1100  |
| Tocantinia        | 5927   | 1           | 1           | Alta    |
| Monte do Carmo    | 4196   | 0,01        | 0,938672448 | Alta    |
| Palmeirópolis     | 5407   | 0,002       | 0,935684333 | Alta    |
| Miracema do       |        | ,           |             | Alta    |
| Tocantins         | 28239  | 0,000833333 | 0,890801347 | 7 1114  |
| Sucupira          | 1236   | 1           | 0,876244854 | Alta    |
| Aurora do         | 1230   |             | ,           | Alta    |
| Tocantins         | 2827   | 0,01028523  | 0,840615038 | 7 Hta   |
| Sitio novo do     |        |             |             | Alta    |
| Tocantins         | 11225  | 1           | 0,827302373 | Aita    |
| Xambioá           | 12799  | 0,00125     | 0,806536734 | Alta    |
| Aliança do        | 12///  | 0,00123     | •           | Aita    |
| Tocantins         | 6491   | 0,003333333 | 0,614490787 | Média   |
| Pium              | 4106   | 0,0025      | 0,600926088 | Média   |
| Colinas do        | 4100   | 0,0023      | 0,000920088 | Media   |
| Tocantins         | 28467  | 0,000591373 | 0,597315885 | Média   |
| Pindorama do      |        |             |             |         |
| Tocantins         | 4490   | 0,003333333 | 0,590091702 | Média   |
| Riachinho         | 3749   | 0.002492051 | 0.597100402 | Média   |
| Natividade        |        | 0,003483951 | 0,587100402 |         |
|                   | 9764   | 0,0025      | 0,536736125 | Média   |
| Crixas do         | 1571   | 0,017144815 | 0,520935372 | Média   |
| Tocantins         | 2072   | 0.00222222  | 0.510254260 | N/21:-  |
| Silvanópolis      | 3873   | 0,003333333 | 0,512354369 | Média   |
| Fatima            | 3807   | 1           | 0,512235024 | Média   |
| Araguacema        | 6105   | 0,003333333 | 0,496067524 | Regular |
| Santa Rita do     | 1939   | 0,005       | 0,495004412 | Regular |

| Tocantins        |                  |             |             |         |
|------------------|------------------|-------------|-------------|---------|
| Ponte alta do    | 6111             | 0,003333333 | 0,472701924 | Regular |
| Tocantins        | 0111             | 0,003333333 | 0,472701724 | Regulai |
| Pedro Afonso     | 9017             | 0,001428571 | 0,44127834  | Regular |
| Arraias          | 10960            | 0,001666667 | 0,439222156 | Regular |
| Babaçulândia     | 11257            | 0,00125     | 0,420182756 | Regular |
| Peixe            | 8677             | 0,001111111 | 0,404231216 | Regular |
| Paraná           | 10009            | 0,001666667 | 0,388983807 | Regular |
| Nova Olinda      | 10653            | 0,001666667 | 0,378961473 | Regular |
| Marilândia do    | 3524             | 1           | 0,378470182 | Regular |
| Tocantins        | 332 <del>4</del> |             | 0,370470102 | Regulai |
| Esperantina      | 9578             | 0,003333333 | 0,354991035 | Regular |
| Miranorte        | 12463            | 0,001666667 | 0,348907542 | Regular |
| Recursolândia    | 3896             | 1           | 0,32700611  | Regular |
| Presidente       | 3899             | 1           | 0,300903145 | Regular |
| Kennedy          | 3077             |             | 0,300703143 | Regulai |
| Barrolandia      | 4500             | 0,003333333 | 0,260267314 | Regular |
| Muricilândia     | 2628             | 1           | 0,252342409 | Regular |
| São Sebastião do | 4534             | 1           | 0,245594383 | Baixa   |
| Tocantins        | 7337             | 1           | 0,243374303 |         |
| Lagoa da         | 9102             | 0,001428571 | 0,245087659 | Baixa   |
| Confusão         | 7102             | 0,001420371 | 0,243007037 |         |
| Palmeiras do     | 5930             | 1           | 0,237358937 | Baixa   |
| Tocantins        | 3730             | 1           | 0,237330737 |         |
| Axixá do         | 7974             | 0,01        | 0,234430549 | Baixa   |
| Tocantins        |                  | 0,01        |             |         |
| Sampaio          | 2448             | 1           | 0,229066696 | Baixa   |
| Pau d'arco       | 4689             | 0,001428571 | 0,204825699 | Baixa   |
| Brasilândia do   | 2082             | 0,005611379 | 0,20180639  | Baixa   |
| Tocantins        |                  |             | ,           |         |
| Rio sono         | 5420             | 0,01        | 0,184547812 | Baixa   |
| Bernardo Sayao   | 4725             | 0,0025      | 0,17949091  | Baixa   |
| Arapoema         | 6641             | 0,005       | 0,165619579 | Baixa   |
| Filadélfia       | 8754             | 0,001428571 | 0,164978963 | Baixa   |
| Palmeirante      | 3665             | 0,0025      | 0,140164349 | Baixa   |
| Goiatins         | 10777            | 0,003333333 | 0,136672238 | Baixa   |
| Itacaja          | 6569             | 0,003333333 | 0,136090545 | Baixa   |
| Santa Fé do      | 6970             | 0,001666667 | 0,128411677 | Baixa   |
| Araguaia         | 0710             | 0,001000007 | 0,120+11077 |         |
| Augustinópolis   | 14923            | 0,000588235 | 0,104016458 | Baixa   |
| Aguiarnopolis    | 3650             | 0,005       | 0,095091494 | Baixa   |
| Ananás           | 12156            | 0,001428571 | 0,084995025 | Baixa   |
| Araguanã         | 5691             | 0,001428571 | 0,069079067 | Baixa   |

## **APENDICE F1:**

Tabela 142: Eficiência do Estado do MARANHÃO e DMU, ano 2007.

|                                                  | Eficiência do Estado d       | IO MAKANHA | AO e DMU, and                       |                                                                  |               |
|--------------------------------------------------|------------------------------|------------|-------------------------------------|------------------------------------------------------------------|---------------|
| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                          | População  | Eficiência<br>Total Geral<br>(eftg) | Eficiência<br>por<br>Tamanho da<br>População<br>( <i>eftfp</i> ) | Classificação |
|                                                  | Açailândia                   | 97034      | 0,00013                             | 1                                                                | Alta          |
|                                                  | Anajatuba                    | 23941      | 0,007896                            | 1                                                                | Alta          |
|                                                  | Arame                        | 27229      | 0,002658                            | 1                                                                | Alta          |
|                                                  | Bacabal                      | 95124      | 0,0002                              | 1                                                                | Alta          |
|                                                  | Bacabeira                    | 14611      | 0,000608                            | 1                                                                | Alta          |
|                                                  | Bequimão                     | 20735      | 0,001667                            | 1                                                                | Alta          |
|                                                  | Buriti bravo                 | 22279      | 0,001667                            | 1                                                                | Alta          |
|                                                  | Centro novo do<br>Maranhão   | 15127      | 1                                   | 1                                                                | Alta          |
|                                                  | Codó                         | 110574     | 0,000313                            | 1                                                                | Alta          |
|                                                  | Esperantinópolis             | 18569      | 0,005                               | 1                                                                | Alta          |
|                                                  | Maracaçumé                   | 17537      | 1                                   | 1                                                                | Alta          |
|                                                  | Miranda do norte             | 17742      | 0,00318                             | 1                                                                | Alta          |
|                                                  | Monção                       | 27558      | 0,001111                            | 1                                                                | Alta          |
|                                                  | Nova Iorque                  | 4892       | 0,005                               | 1                                                                | Alta          |
|                                                  | Palmeirândia                 | 18105      | 0,01                                | 1                                                                | Alta          |
|                                                  | Pedro do Rosário             | 21714      | 1                                   | 1                                                                | Alta          |
|                                                  | Presidente Sarney            | 15606      | 1                                   | 1                                                                | Alta          |
|                                                  | Presidente Vargas            | 9798       | 1                                   | 1                                                                | Alta          |
| MA                                               | São domingos do<br>Maranhão  | 32557      | 0,002                               | 1                                                                | Alta          |
|                                                  | São Raimundo das mangabeiras | 15962      | 0,007116                            | 1                                                                | Alta          |
|                                                  | Satubinha                    | 8399       | 0,003333                            | 1                                                                | Alta          |
|                                                  | Senador la Rocque            | 20793      | 1                                   | 1                                                                | Alta          |
|                                                  | Trizidela do vale            | 18300      | 0,01                                | 1                                                                | Alta          |
|                                                  | Turiaçu                      | 32491      | 0,001667                            | 1                                                                | Alta          |
|                                                  | Turilândia                   | 20119      | 1                                   | 1                                                                | Alta          |
|                                                  | Penalva                      | 33473      | 0,000526                            | 0,955614                                                         | Alta          |
|                                                  | Lajeado novo                 | 6620       | 0,002                               | 0,939879                                                         | Alta          |
|                                                  | Porto franco                 | 18692      | 0,000667                            | 0,839567                                                         | Alta          |
|                                                  | Balsas                       | 78845      | 0,000263                            | 0,830505                                                         | Alta          |
|                                                  | Arari                        | 27753      | 0,000833                            | 0,824732                                                         | Alta          |
|                                                  | Santa Luzia                  | 69306      | 0,000244                            | 0,819745                                                         | Alta          |
|                                                  | Lima campos                  | 11365      | 0,01                                | 0,804509                                                         | Alta          |
|                                                  | São Mateus do<br>Maranhão    | 38045      | 0,000833                            | 0,790167                                                         | Alta          |
|                                                  | Governador<br>Archer         | 9920       | 0,003333                            | 0,770186                                                         | Alta          |
|                                                  | São Bento                    | 37449      | 0,001111                            | 0,763255                                                         | Alta          |
|                                                  | Amarante do                  | 35727      | 0,000526                            | 0,753577                                                         | Alta          |

| Maranhão                      |                                   |                      |                      |                |
|-------------------------------|-----------------------------------|----------------------|----------------------|----------------|
| Buriticupu                    | 61480                             | 0,000347             | 0,751349             | Alta           |
| Lago da pedra                 | 42666                             | 0,000833             | 0,736614             | Média          |
| Santa Luzia do                | 19633                             | 0,001667             | 0,717686             | Média          |
| Paruá                         |                                   | ,                    | •                    |                |
| Timbiras                      | 26132                             | 0,01                 | 0,706597             | Média          |
| Viana                         | 47466                             | 0,000526             | 0,705282             | Média          |
| Coroatá<br>Santa Inês         | 60589<br>82026                    | 0,000303<br>0,000278 | 0,703442<br>0,685028 | Média<br>Média |
| Governador                    | 82020                             | 0,000278             | 0,083028             | Media          |
| Edison Lobão                  | 14086                             | 0,001787             | 0,671986             | Média          |
| Lago dos                      | <b>55</b> 00                      |                      | 0. < 2.7.02          | 3.57.11        |
| Rodrigues                     | 7780                              | 1                    | 0,63503              | Média          |
| Cururupu                      | 34018                             | 0,0005               | 0,62345              | Média          |
| Alto alegre do                | 22002                             | 0,001429             | 0,576375             | Média          |
| Maranhão                      | 22002                             | 0,001427             | 0,570575             | Wicdia         |
| Central do                    | 8776                              | 1                    | 0,490189             | Regular        |
| Maranhão                      |                                   |                      | ,                    | •              |
| Paco do lumiar<br>Centro do   | 98175                             | 0,0004               | 0,459343             | Regular        |
| Guilherme                     | 7094                              | 1                    | 0,428411             | Regular        |
| Cachoeira grande              | 8831                              | 0,01                 | 0,378391             | Regular        |
| Carutapera                    | 20285                             | 0,00125              | 0,362095             | Regular        |
| Raposa                        | 24201                             | 0,000833             | 0,32502              | Regular        |
| Olinda nova do                | 12068                             | 0,010203             | 0,300943             | Regular        |
| Maranhão                      |                                   | ,                    | ,                    | Regulai        |
| Joao Lisboa                   | 19928                             | 0,000667             | 0,262918             | Regular        |
| Boa vista do                  | 7385                              | 0,003333             | 0,258294             | Regular        |
| Gurupi<br>Peri mirim          | 12210                             | 0,003333             |                      | •              |
| Paraibano                     | 12219<br>19453                    | 0,000909             | 0,241511<br>0,2401   | Baixa<br>Baixa |
| Estreito                      | 26490                             | 0,000588             | 0,232306             | Baixa          |
| Sambaíba                      | 5792                              | 0,01                 | 0,184867             | Baixa          |
| Loreto                        | 10340                             | 0,002868             | 0,156414             | Baixa          |
| Apicum-acu                    | 13216                             | 1                    | 0,116078             | Baixa          |
| Presidente                    | 11705                             | 0,0025               | 0,100817             | Baixa          |
| Juscelino                     | 11703                             | 0,0023               | 0,100017             | Baixa          |
| Santo Antônio dos             | 14225                             | 0,005                | 0,073599             | Baixa          |
| Lopes                         |                                   | ,                    |                      | ъ :            |
| Alto Parnaíba                 | 10304                             | 0,0025               | 0,060994             | Baixa<br>Baixa |
| Itaipava do Grajau<br>Pio XII | 13197<br>21821                    | 0,014353<br>0,0025   | 0,054297<br>0,052012 | Baixa          |
| Feira nova do                 |                                   | •                    | ,                    |                |
| Maranhão                      | 7648                              | 1                    | 0,038062             | Baixa          |
| Maranhãozinho                 | 11887                             | 0,01                 | 0,024083             | Baixa          |
| Governador Nunes              | 24012                             | 0,000385             | 0,000445             | Baixa          |
| Freire                        | <i>2</i> <del>7</del> ∪1 <i>2</i> | 0,000303             | 0,000++3             | Daixa          |

#### **APENDICE F2:**

Tabela 143: Eficiência do Estado do PARÁ e DMU, ano 2007.

|             | Eficiência do Estado o | io PARA e DN | 1U, ano 2007. |            |               |  |
|-------------|------------------------|--------------|---------------|------------|---------------|--|
| Unidade     |                        |              |               | Eficiência |               |  |
| Federada da |                        | População    | Eficiência    | por        |               |  |
| Amazônia    | DMU                    | 1 opulação   | Total Geral   | Tamanho da | Classificação |  |
| Legal (UF)  |                        |              | (eftg)        | População  |               |  |
|             |                        |              |               | (eftfp)    |               |  |
|             | Abaetetuba             | 132222       | 0,000238      | 1          | Alta          |  |
|             | Afuá                   | 31183        | 0,0025        | 1          | Alta          |  |
|             | Almeirim               | 30903        | 0,001         | 1          | Alta          |  |
|             | Anapu                  | 17787        | 0,000769      | 1          | Alta          |  |
|             | Aveiro                 | 18830        | 0,005         | 1          | Alta          |  |
|             | Belém                  | 1408847      | 1,16E-05      | 1          | Alta          |  |
|             | Breves                 | 94458        | 0,000238      | 1          | Alta          |  |
|             | Canaã dos Carajás      | 23757        | 0,000638      | 1          | Alta          |  |
|             | Curuca                 | 33768        | 0,000625      | 1          | Alta          |  |
|             | Dom Eliseu             | 38150        | 0,000303      | 1          | Alta          |  |
|             | Jacundá                | 51511        | 0,000132      | 1          | Alta          |  |
|             | Melgaço                | 17845        | 0,005         | 1          | Alta          |  |
|             | Novo                   | F1.C45       | 0.000245      | 1          | A 14 -        |  |
|             | Repartimento           | 51645        | 0,000345      | 1          | Alta          |  |
|             | Paragominas            | 90819        | 8,77E-05      | 1          | Alta          |  |
|             | Parauapebas            | 133298       | 8,77E-05      | 1          | Alta          |  |
|             | Santarém novo          | 6007         | 1             | 1          | Alta          |  |
|             | São João do            | 11673        | 0,001667      | 1          | Alta          |  |
|             | Araguaia               | 110/3        | 0,001007      | 1          | Alla          |  |
| PA          | Tome-acu               | 47081        | 0,00025       | 1          | Alta          |  |
| ГA          | Tucuruí                | 89264        | 7,14E-05      | 1          | Alta          |  |
|             | Ulianópolis            | 31881        | 0,000256      | 1          | Alta          |  |
|             | Primavera              | 10463        | 0,005         | 0,961197   | Alta          |  |
|             | Juruti                 | 33775        | 0,002         | 0,956217   | Alta          |  |
|             | Augusto Corrêa         | 37086        | 0,0025        | 0,940598   | Alta          |  |
|             | Pacajá                 | 38365        | 0,000294      | 0,931175   | Alta          |  |
|             | Itaituba               | 118194       | 0,00013       | 0,879886   | Alta          |  |
|             | Castanhal              | 152126       | 9,17E-05      | 0,866306   | Alta          |  |
|             | Capanema               | 61350        | 0,000625      | 0,841708   | Alta          |  |
|             | Santana do             | 40052        | 0,000313      | 0.702570   | A 1to         |  |
|             | Araguaia               | 49053        | 0,000313      | 0,782578   | Alta          |  |
|             | Moju                   | 63821        | 0,0005        | 0,754446   | Alta          |  |
|             | Redenção               | 64583        | 0,000127      | 0,74347    | Média         |  |
|             | Cumaru do norte        | 10452        | 0,01          | 0,64237    | Média         |  |
|             | Maracanã               | 28296        | 0,01          | 0,642055   | Média         |  |
|             | Braganca               | 101728       | 0,000233      | 0,579368   | Média         |  |
|             | Vigia                  | 43847        | 0,000588      | 0,576332   | Média         |  |
|             | Palestina do para      | 7156         | 0,0014        | 0,572663   | Média         |  |
|             | Brejo grande do        |              | ,             | ,          |               |  |
|             | Araguaia               | 7444         | 0,010683      | 0,564147   | Média         |  |
|             | Abel Figueiredo        | 6592         | 0,001         | 0,562477   | Média         |  |
|             | $\mathcal{L}$          |              | ,             | •          |               |  |

| Capitão Poço                 | 50839 | 0,000526 | 0,561479 | Média   |
|------------------------------|-------|----------|----------|---------|
| Igarapé-acu                  | 33778 | 0,001667 | 0,512437 | Média   |
| Trairão                      | 16097 | 0,00125  | 0,476243 | Regular |
| Jacareacanga                 | 37073 | 0,003333 | 0,454275 | Regular |
| Alenquer                     | 52661 | 0,000845 | 0,42154  | Regular |
| Limoeiro do                  | 23284 | 0,01     | 0,420873 | Regular |
| Ajuru                        |       |          |          | _       |
| Terra santa                  | 15316 | 0,001429 | 0,385995 | Regular |
| Colares                      | 10981 | 0,005    | 0,30891  | Regular |
| São Geraldo do<br>Araguaia   | 24872 | 0,000625 | 0,280244 | Regular |
| Garrafão do norte            | 24619 | 0,001667 | 0,268835 | Regular |
| São Caetano de               | 16179 | 0,002    | 0,258761 | Regular |
| Odivelas<br>Mae do rio       | 27614 | 0,001    | 0,200853 | Baixa   |
| Santo Antônio do             | 27014 | 0,001    | 0,200633 | Daixa   |
| Tauá                         | 24814 | 0,000909 | 0,192047 | Baixa   |
| Rio Maria                    | 16993 | 0,001667 | 0,158467 | Baixa   |
| São Francisco do             | 11913 | 0,003333 | 0,144004 | Baixa   |
| Para                         |       | •        | •        |         |
| Ourilândia do                | 20415 | 0,000385 | 0,138093 | Baixa   |
| norte                        |       |          |          |         |
| Santa Maria das<br>barreiras | 16012 | 0,0025   | 0,136133 | Baixa   |
|                              | 26651 | 0.001420 | 0.122104 | Baixa   |
| Marapanim                    |       | 0,001429 | 0,133184 |         |
| Baião                        | 26190 | 0,001667 | 0,123456 | Baixa   |
| Gurupá                       | 24384 | 0,005    | 0,075611 | Baixa   |
| Anajás                       | 24942 | 0,003333 | 0,034556 | Baixa   |
| Bannach                      | 3812  | 0,00292  | 0,007681 | Baixa   |

## **APENDICE F3:**

Tabela 144: Eficiência do Estado de TOCANTINS e DMU, ano 2007.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF)                             | DMU           | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por<br>Tamanho da<br>População<br>( <i>eftfp</i> ) | Classificação |
|------------------------------------------------------------------------------|---------------|-----------|----------------------------------------------|------------------------------------------------------------------|---------------|
|                                                                              | Angico        | 3169      | 1                                            | 1                                                                | Alta          |
|                                                                              | Araguaçu      | 8989      | 1                                            | 1                                                                | Alta          |
|                                                                              | Araguaína     | 115759    | 6,37E-05                                     | 1                                                                | Alta          |
| TO  Arraias  Bandeirantes do  Tocantins  Buriti do  Tocantins  Campos lindos | 10626         | 0,003004  | 1                                            | Alta                                                             |               |
|                                                                              |               | 2711      | 1                                            | 1                                                                | Alta          |
|                                                                              |               | 8164      | 1                                            | 1                                                                | Alta          |
|                                                                              | Campos lindos | 7615      | 1                                            | 1                                                                | Alta          |

| Carrasco bonito             | 3314   | 1        | 1        | Alta    |
|-----------------------------|--------|----------|----------|---------|
| Chapada de areia            | 1239   | 1        | 1        | Alta    |
| Dianópolis                  | 18584  | 0,0005   | 1        | Alta    |
| Esperantina                 | 8134   | 1        | 1        | Alta    |
| Ipueiras                    | 1698   | 0,0025   | 1        | Alta    |
| Lavandeira                  | 1590   | 1        | 1        | Alta    |
| Miracema do Tocantins       | 19683  | 0,003249 | 1        | Alta    |
| Novo alegre                 | 1801   | 1        | 1        | Alta    |
| Palmeirópolis               | 8120   | 0,084685 | 1        | Alta    |
| Pium                        | 6403   | 1        | 1        | Alta    |
| Porto nacional              | 45289  | 1        | 1        | Alta    |
| Rio dos bois                | 2092   | 1        | 1        | Alta    |
| Sandolandia                 | 3443   | 0,010653 | 1        | Alta    |
| São Félix do                | 3443   | 0,010055 | 1        | Ana     |
| Tocantins                   | 1409   | 1        | 1        | Alta    |
| São Miguel do               |        |          |          |         |
| Tocantins                   | 10221  | 0,0025   | 1        | Alta    |
| Tocantinia                  | 6663   | 1        | 1        | Alta    |
|                             |        | 0,01     | _        | Alta    |
| Lajeado<br>Paraiso do       | 2159   | 0,01     | 0,922842 | Alla    |
| Tocantins                   | 40290  | 1        | 0,905471 | Alta    |
| Ponte alta do bom           |        |          |          |         |
|                             | 4529   | 0,00535  | 0,897805 | Alta    |
| Jesus                       |        |          |          |         |
| Aliança do<br>Tocantins     | 5701   | 0,004661 | 0,869412 | Alta    |
|                             | 10056  | 0.001667 | 0.953665 | Alta    |
| Xambioá                     | 10856  | 0,001667 | 0,852665 |         |
| Itapiratins Marianánalia da | 3421   | 0,01     | 0,828551 | Alta    |
| Marianópolis do             | 4473   | 1        | 0,804565 | Alta    |
| Tocantins                   |        |          |          |         |
| Ponte alta do               | 6569   | 0,0025   | 0,782735 | Alta    |
| Tocantins                   |        |          |          |         |
| Dois irmãos do              | 7060   | 0,007757 | 0,762217 | Alta    |
| Tocantins                   | 0171   |          |          | A 1.    |
| Cachoeirinha                | 2171   | 0,01     | 0,753415 | Alta    |
| Peixe                       | 8750   | 0,001393 | 0,742536 | Média   |
| Goiatins                    | 11639  | 0,005    | 0,72986  | Média   |
| Santa Maria do              | 2673   | 0,0025   | 0,691289 | Média   |
| Tocantins                   | 5.4.60 | 0.001010 | 0.601106 | 3.67.11 |
| Aragominas                  | 5469   | 0,021212 | 0,691126 | Média   |
| Divinópolis do              | 6359   | 0,00125  | 0,679605 | Média   |
| Tocantins                   |        | ,        | ,        |         |
| Colinas do                  | 29298  | 0,001708 | 0,651663 | Média   |
| Tocantins                   |        |          |          |         |
| Nova Rosalandia             | 3772   | 0,01     | 0,634726 | Média   |
| Riachinho                   | 3691   | 0,012265 | 0,614488 | Média   |
| Carmolandia                 | 2313   | 0,055456 | 0,605686 | Média   |
| Santa Tereza do             | 2297   | 1        | 0,604625 | Média   |
| Tocantins                   |        |          | •        |         |
| Recursolândia               | 3665   | 0,04759  | 0,591588 | Média   |

| Aurora do                     | 2207                     | 0.004.400 | 0.701005 | 2.54.11        |
|-------------------------------|--------------------------|-----------|----------|----------------|
| Tocantins                     | 3385                     | 0,001429  | 0,591092 | Média          |
| Babaçulândia                  | 10372                    | 0,00125   | 0,543514 | Média          |
| Novo acordo                   | 3754                     | 1         | 0,537072 | Média          |
| Natividade                    | 9090                     | 0,003578  | 0,49783  | Regular        |
| Miranorte                     | 11858                    | 0,000625  | 0,485242 | Regular        |
| Muricilândia                  | 2850                     | 0,01      | 0,482108 | Regular        |
| Combinado                     | 4878                     | 0,01      | 0,481579 | Regular        |
| Aparecida do rio              |                          | ,         | ,        | C              |
| negro                         | 4018                     | 0,003333  | 0,469498 | Regular        |
| Santa rosa do                 | 4.4.1.77                 | 0.002     | 0.460000 | D 1            |
| Tocantins                     | 4417                     | 0,002     | 0,469099 | Regular        |
| Pedro Afonso                  | 10294                    | 0,0025    | 0,442277 | Regular        |
| Mateiros                      | 1737                     | 1         | 0,408416 | Regular        |
| Luzinópolis                   | 2784                     | 1         | 0,398352 | Regular        |
| Bom Jesus do                  | 2710                     | 0.005     | 0.202452 | Dagular        |
| Tocantins                     | 2710                     | 0,005     | 0,393452 | Regular        |
| Sitio novo do                 | 9302                     | 0,01      | 0,380747 | Dagular        |
| Tocantins                     | 9302                     | 0,01      | 0,360747 | Regular        |
| Pindorama do                  | 4397                     | 1         | 0,375141 | Regular        |
| Tocantins                     | 4397                     | 1         | 0,373141 | Regulai        |
| Araguatins                    | 25973                    | 0,000769  | 0,367617 | Regular        |
| Araguacema                    | 5423                     | 0,002     | 0,358685 | Regular        |
| Arapoema                      | 6839                     | 0,005     | 0,345593 | Regular        |
| Itacaja                       | 6386                     | 0,003333  | 0,334158 | Regular        |
| Marilândia do                 | 3185                     | 0,01      | 0,325436 | Regular        |
| Tocantins                     | 3103                     | 0,01      | 0,323430 | Regular        |
| São Bento do                  | 4447                     | 0,001429  | 0,321066 | Regular        |
| Tocantins                     |                          | ,         |          | <u> </u>       |
| Rio sono                      | 6167                     | 0,01      | 0,306243 | Regular        |
| Nova Olinda                   | 10518                    | 0,001     | 0,297794 | Regular        |
| Novo jardim                   | 2419                     | 1         | 0,28193  | Regular        |
| Palmeiras do                  | 4542                     | 0,01      | 0,280258 | Regular        |
| Tocantins                     |                          | ,         |          | C              |
| Monte do Carmo                | 6387                     | 0,01      | 0,278161 | Regular        |
| Filadélfia                    | 7787                     | 0,0025    | 0,269779 | Regular        |
| Presidente                    | 3680                     | 0,003333  | 0,258429 | Regular        |
| Kennedy                       | <i>5155</i>              | 0.0025    | 0.252541 | D 1            |
| Barrolandia<br>Palmeirante    | 5155                     | 0,0025    | 0,252541 | Regular        |
|                               | 4689<br>4518             | 0,01      | 0,22872  | Baixa          |
| Bernardo Sayao<br>Santa fé do | 4316                     | 0,003333  | 0,226936 | Baixa          |
|                               | 5610                     | 0,003333  | 0,202713 | Baixa          |
| Araguaia<br>Paraná            | 10491                    | 0,001667  | 0,194072 | Baixa          |
| Lagoa da                      | 10471                    | 0,001007  | 0,194072 | Daixa          |
| confusão                      | 8220                     | 0,003333  | 0,190464 | Baixa          |
| Fatima                        | 3984                     | 0,005     | 0,180242 | Baixa          |
| Pau d'arco                    | 396 <del>4</del><br>4767 | 0,003     | 0,170762 | Baixa          |
| Ananás                        | 9358                     | 0,003333  | 0,170702 | Baixa<br>Baixa |
| Aguiarnopolis                 | 3995                     | 0,003333  | 0,150719 | Baixa          |
| 1 15 a lai 110 polis          | 3773                     | 0,005555  | 0,130/17 | Daixa          |

| Sampaio<br>Sucupira<br>Araguanã | 3672<br>1667<br>5000 | 0,01<br>1<br>0,00125 | 0,150155<br>0,144059<br>0,136404 | Baixa<br>Baixa<br>Baixa |
|---------------------------------|----------------------|----------------------|----------------------------------|-------------------------|
| São Sebastião do<br>Tocantins   | 4244                 | 0,01                 | 0,130346                         | Baixa                   |
| Silvanópolis                    | 5098                 | 0,01                 | 0,126288                         | Baixa                   |
| Crixas do<br>Tocantins          | 1264                 | 1                    | 0,087535                         | Baixa                   |
| Axixá do<br>Tocantins           | 8917                 | 1                    | 0,06357                          | Baixa                   |
| Augustinópolis                  | 14800                | 0,000227             | 0,055649                         | Baixa                   |

## **APENDICE G1:**

Tabela 145: Eficiência do Estado do MARANHÃO e DMU, ano 2008.

| Unidade                                                                        | Efferencia do Estado d     |           | ,           | Eficiência |               |
|--------------------------------------------------------------------------------|----------------------------|-----------|-------------|------------|---------------|
| Federada da                                                                    |                            |           | Eficiência  | por        |               |
| Amazônia                                                                       | DMU                        | População | Total Geral | Tamanho da | Classificação |
| Legal (UF)                                                                     |                            |           | (eftg)      | População  | <b>3</b>      |
| - B - ( - )                                                                    |                            |           | (3.0)       | (eftfp)    |               |
|                                                                                | Açailândia                 | 100017    | 0,000108    | 1          | Alta          |
|                                                                                | Alto alegre do<br>Maranhão | 22676     | 0,00125     | 1          | Alta          |
|                                                                                | Anajatuba                  | 24695     | 0,01        | 1          | Alta          |
|                                                                                | Arame                      | 27967     | 0,000588    | 1          | Alta          |
|                                                                                | Bacabal                    | 97946     | 0,000192    | 1          | Alta          |
| Bernardo do<br>Mearim<br>Bom Jesus das<br>selvas<br>Centro novo do<br>Maranhão | 6160                       | 1         | 1           | Alta       |               |
|                                                                                |                            | 24661     | 0,000417    | 1          | Alta          |
|                                                                                |                            | 15577     | 0,01        | 1          | Alta          |
|                                                                                | Esperantinópolis           | 19055     | 0,002       | 1          | Alta          |
| MA                                                                             | Governador Nunes freire    | 24671     | 0,0005      | 1          | Alta          |
|                                                                                | Joao Lisboa                | 20482     | 0,0025      | 1          | Alta          |
|                                                                                | Lima campos                | 11706     | 0,0025      | 1          | Alta          |
|                                                                                | Maracaçumé                 | 18098     | 0,003333    | 1          | Alta          |
|                                                                                | Nova Iorque                | 5041      | 1           | 1          | Alta          |
|                                                                                | Paco do lumiar             | 101452    | 0,000357    | 1          | Alta          |
|                                                                                | Palmeirândia               | 18646     | 0,00125     | 1          | Alta          |
|                                                                                | Pedro do Rosário           | 22417     | 0,01        | 1          | Alta          |
|                                                                                | Porto franco               | 19271     | 0,000476    | 1          | Alta          |
|                                                                                | Presidente Vargas          | 10096     | 1           | 1          | Alta          |
|                                                                                | Santa Luzia                | 71314     | 0,000286    | 1          | Alta          |
|                                                                                | Santa Luzia do<br>Paruá    | 20194     | 0,000769    | 1          | Alta          |
|                                                                                | São Luís                   | 986826    | 1,03E-05    | 1          | Alta          |

| São Raimundo das            | 16447  | 0,000869 | 1        | Alta    |
|-----------------------------|--------|----------|----------|---------|
| mangabeiras<br>Timbiras     | 26884  | 0,005    | 1        | Alta    |
|                             |        | 0,003    | 1        |         |
| Trizidela do vale           | 18867  | -        |          | Alta    |
| Turiaçu                     | 33456  | 0,001667 | 0,96685  | Alta    |
| Raposa                      | 25042  | 0,000476 | 0,94585  | Alta    |
| Penalva                     | 34505  | 0,000435 | 0,923719 | Alta    |
| Lago da pedra               | 43947  | 0,001111 | 0,923305 | Alta    |
| Viana                       | 48907  | 0,000455 | 0,910973 | Alta    |
| Coroatá                     | 62442  | 0,000588 | 0,856963 | Alta    |
| São domingos do<br>Maranhão | 33491  | 0,000909 | 0,791599 | Alta    |
| Amarante do<br>Maranhão     | 36850  | 0,000476 | 0,769396 | Alta    |
| Balsas                      | 81497  | 0,000222 | 0,766692 | Alta    |
| Buriticupu                  | 63466  | 0,000208 | 0,765003 | Alta    |
| São Bento                   | 38645  | 0,000833 | 0,76456  | Alta    |
| Santa Inês                  | 84582  | 0,000208 | 0,732856 | Média   |
| Codó                        | 113768 | 0,000233 | 0,727842 | Média   |
| Pinheiro                    | 76391  | 0,000154 | 0,72744  | Média   |
| Arari                       | 28585  | 0,000769 | 0,707891 | Média   |
| Paraibano                   | 20048  | 0,001    | 0,631935 | Média   |
| Vargem grande               | 44648  | 0,000625 | 0,58875  | Média   |
| Senador la Rocque           | 19328  | 0,01     | 0,555928 | Média   |
| Satubinha                   | 8651   | 1        | 0,553802 | Média   |
| Boa vista do                | 7643   | 1        | 0,54153  | Média   |
| Gurupi                      | 7043   | 1        | 0,34133  | Media   |
| São Mateus do               | 39210  | 1        | 0.54092  | Média   |
| Maranhão                    | 39210  | 1        | 0,54083  | Media   |
| Lago dos                    | 7002   | 0.01     | 0.520496 | Malia   |
| Rodrigues                   | 7993   | 0,01     | 0,530486 | Média   |
| Bacabeira                   | 15115  | 0,000435 | 0,507404 | Média   |
| Carutapera                  | 20905  | 0,00125  | 0,503318 | Média   |
| Santo Antônio dos           | 1.4627 | 0.0005   | 0.407120 | D 1     |
| Lopes                       | 14637  | 0,0025   | 0,497128 | Regular |
| Sambaíba                    | 5971   | 1        | 0,444055 | Regular |
| Paulo ramos                 | 16534  | 0,0025   | 0,443396 | Regular |
| Turilândia                  | 20758  | 0,005    | 0,438859 | Regular |
| Presidente Sarney           | 16095  | 1        | 0,435616 | Regular |
| Governador                  |        | 1        | 0.424262 | · ·     |
| Archer                      | 10224  | 1        | 0,434262 | Regular |
| Monção                      | 28386  | 0,0025   | 0,431806 | Regular |
| Peri mirim                  | 12556  | 0,005    | 0,425224 | Regular |
| Bequimão                    | 21356  | 0,001429 | 0,372587 | Regular |
| Lajeado novo                | 6829   | 0,001667 | 0,369068 | Regular |
| Estreito                    | 27328  | 0,000833 | 0,342723 | Regular |
| Buriti bravo                | 22941  | 0,000    | 0,315739 | Regular |
| Central do                  |        | 0,001    |          | Regular |
| Maranhão<br>Senador         | 9062   | 1        | 0,311222 | _       |
|                             | 9343   | 0,003333 | 0,284262 | Regular |

| Alexandre costa           |       |          |          |         |
|---------------------------|-------|----------|----------|---------|
| Olho d'agua das cunhas    | 17868 | 0,001429 | 0,271036 | Regular |
| Pio XII                   | 22410 | 0,00125  | 0,130947 | Baixa   |
| Apicum-acu                | 13641 | 0,003333 | 0,107435 | Baixa   |
| Itaipava do Grajaú        | 13636 | 0,011617 | 0,087906 | Baixa   |
| Presidente<br>Juscelino   | 12094 | 1        | 0,076869 | Baixa   |
| Alto Parnaíba             | 10606 | 0,005    | 0,039307 | Baixa   |
| Feira nova do<br>Maranhão | 7872  | 0,001667 | 0,020683 | Baixa   |

#### **APENDICE G2:**

Tabela 146: Eficiência do Estado do PARÁ e DMU, ano 2008.

|                                                                                                                                            | Eficiência do Estado o | io PAKA e DN | ⁄1∪, ano 2008.                               |                                                                  |               |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------|----------------------------------------------|------------------------------------------------------------------|---------------|
| Unidade<br>Federada da<br>Amazônia<br>Legal (UF)                                                                                           | DMU                    | População    | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por<br>Tamanho da<br>População<br>( <i>eftfp</i> ) | Classificação |
|                                                                                                                                            | Afuá                   | 32368        | 0,001429                                     | 1                                                                | Alta          |
|                                                                                                                                            | Almeirim               | 31475        | 0,000667                                     | 1                                                                | Alta          |
|                                                                                                                                            | Ananindeua             | 495480       | 1,56E-05                                     | 1                                                                | Alta          |
|                                                                                                                                            | Augusto Corrêa         | 38760        | 0,002                                        | 1                                                                | Alta          |
|                                                                                                                                            | Bannach                | 3935         | 0,01                                         | 1                                                                | Alta          |
|                                                                                                                                            | Belém                  | 1424124      | 9,93E-06                                     | 1                                                                | Alta          |
|                                                                                                                                            | Braganca               | 105908       | 0,000152                                     | 1                                                                | Alta          |
|                                                                                                                                            | Breves                 | 99223        | 0,000385                                     | 1                                                                | Alta          |
|                                                                                                                                            | Canaã dos Carajás      | 26135        | 0,000435                                     | 1                                                                | Alta          |
|                                                                                                                                            | Cumaru do norte        | 11348        | 0,005                                        | 1                                                                | Alta          |
| Curuca Dom Eliseu Juruti PA Limoeiro do Ajuru Melgaço Ourilândia do Norte Pacajá Paragominas Primavera Rio Maria Santa Maria das Barreiras | 35790                  | 0,000833     | 1                                            | Alta                                                             |               |
|                                                                                                                                            | Dom Eliseu             | 39161        | 0,000278                                     | 1                                                                | Alta          |
|                                                                                                                                            | Juruti                 | 35155        | 0,001111                                     | 1                                                                | Alta          |
|                                                                                                                                            |                        | 24483        | 0,01                                         | 1                                                                | Alta          |
|                                                                                                                                            | Melgaço                | 17989        | 0,01                                         | 1                                                                | Alta          |
|                                                                                                                                            |                        | 21171        | 0,000278                                     | 1                                                                | Alta          |
|                                                                                                                                            | Pacajá                 | 40768        | 0,000222                                     | 1                                                                | Alta          |
|                                                                                                                                            | Paragominas            | 95479        | 9,62E-05                                     | 1                                                                | Alta          |
|                                                                                                                                            | Primavera              | 10883        | 0,01                                         | 1                                                                | Alta          |
|                                                                                                                                            | 17457                  | 0,000909     | 1                                            | Alta                                                             |               |
|                                                                                                                                            | 17156                  | 0,000667     | 1                                            | Alta                                                             |               |
|                                                                                                                                            | Tome-acu               | 48522        | 0,000263                                     | 1                                                                | Alta          |
|                                                                                                                                            | Tucuruí                | 94015        | 6,94E-05                                     | 1                                                                | Alta          |
|                                                                                                                                            | Ulianópolis            | 34485        | 0,000435                                     | 1                                                                | Alta          |
| C                                                                                                                                          | Castanhal              | 159110       | 8,4E-05                                      | 0,997646                                                         | Alta          |

| Novo              | 54506  | 0,000154 | 0,97116  | Alta    |
|-------------------|--------|----------|----------|---------|
| repartimento      |        |          |          |         |
| Capanema          | 63799  | 0,000588 | 0,897882 | Alta    |
| Parauapebas       | 145326 | 6,21E-05 | 0,87837  | Alta    |
| Redenção          | 66762  | 9,62E-05 | 0,870337 | Alta    |
| Gurupá            | 25306  | 0,003333 | 0,838313 | Alta    |
| Moju              | 67195  | 0,000286 | 0,821684 | Alta    |
| Abaetetuba        | 138005 | 0,000175 | 0,775454 | Alta    |
| Itaituba          | 124865 | 0,000164 | 0,747282 | Média   |
| Mae do rio        | 28762  | 0,0005   | 0,729033 | Média   |
| Palestina do para | 7329   | 0,0025   | 0,717558 | Média   |
| Vigia             | 45680  | 0,000769 | 0,696992 | Média   |
| Alenquer          | 55688  | 0,000455 | 0,634806 | Média   |
| Abel Figueiredo   | 6879   | 0,00125  | 0,612037 | Média   |
| Maracanã          | 29269  | 0,01     | 0,592728 | Média   |
| São Geraldo do    | 25291  | 0,000435 | 0.567620 | Média   |
| Araguaia          | 23291  | 0,000433 | 0,567629 | Media   |
| Igarapé-acu       | 35005  | 0,001111 | 0,524608 | Média   |
| Jacareacanga      | 39892  | 0,01     | 0,49642  | Regular |
| Santo Antônio do  | 26222  | 0,000625 | 0,488116 | Regular |
| Tauá              | 20222  | 0,000023 | 0,400110 | Regulai |
| Terra santa       | 15885  | 0,01     | 0,44354  | Regular |
| São João do       | 11963  | 0,001    | 0,405277 | Regular |
| Araguaia          |        |          |          | _       |
| Trairão           | 16860  | 0,0025   | 0,389699 | Regular |
| Capitão Poço      | 52557  | 1        | 0,278879 | Regular |
| Colares           | 11367  | 0,005    | 0,244515 | Baixa   |
| São Francisco do  | 11986  | 0,000909 | 0,211059 | Baixa   |
| para              | 11700  | 0,000707 | 0,21105) | Bulku   |
| São Caetano de    | 16757  | 0,01     | 0,192826 | Baixa   |
| Odivelas          | 10757  | 0,01     | 0,172020 | Daixa   |
| Brejo grande do   | 7673   | 0,0025   | 0,18179  | Baixa   |
| Araguaia          | 7073   | 0,0023   | 0,10177  | Daixa   |
| Santarém novo     | 6267   | 0,005    | 0,176655 | Baixa   |
| Baião             | 27652  | 0,002    | 0,164631 | Baixa   |
| Anajás            | 26563  | 0,001429 | 0,158686 | Baixa   |
| Marapanim         | 27727  | 0,001667 | 0,09515  | Baixa   |
| Garrafão do norte | 25436  | 0,01     | 0,082697 | Baixa   |
| Aveiro            | 19839  | 0,01     | 0,005941 | Baixa   |

## **APENDICE G3:**

Tabela 147: Eficiência do Estado de TOCANTINS e DMU, ano 2008.

| Unidade                               |     |           |                                     | Eficiência                                         |               |
|---------------------------------------|-----|-----------|-------------------------------------|----------------------------------------------------|---------------|
| Federada da<br>Amazônia<br>Legal (UF) | DMU | População | Eficiência<br>Total Geral<br>(eftg) | por<br>Tamanho da<br>População<br>( <i>eftfp</i> ) | Classificação |

|              | Aragominas                    | 5618           | 1                 | 1                    | Alta         |  |
|--------------|-------------------------------|----------------|-------------------|----------------------|--------------|--|
|              | Araguacema                    | 5579           | 1                 | 1                    | Alta         |  |
|              | Araguanã                      | 5154           | 1                 | 1                    | Alta         |  |
|              | Araguatins                    | 26722          | 0,000769          | 1                    | Alta         |  |
|              | Arraias                       | 10928          | 1                 | 1                    | Alta         |  |
|              | Babaçulândia                  | 10672          | 1                 | 1                    | Alta         |  |
|              | Bandeirantes do               | 2791           | 1                 | 1                    | Alta         |  |
|              | Tocantins                     |                |                   | 1                    |              |  |
|              | Barrolandia                   | 5304           | 0,004264          | 1                    | Alta         |  |
|              | Bom Jesus do                  | 2793           | 0,01              | 1                    | Alta         |  |
|              | Tocantins                     | 2,75           | 0,01              | -                    | 11100        |  |
|              | Buriti do                     | 8404           | 1                 | 1                    | Alta         |  |
|              | Tocantins                     |                |                   |                      |              |  |
|              | Campos lindos                 | 7858           | 1                 | 1                    | Alta         |  |
|              | Carmolandia                   | 2383           | 1                 | 1                    | Alta         |  |
|              | Chanada da ancia              | 3411           | 1                 | 1                    | Alta         |  |
|              | Chapada de areia<br>Combinado | 1274           | 1                 | 1                    | Alta         |  |
|              | Crixas do                     | 5023           | 1                 | 1                    | Alta         |  |
|              | Tocantins                     | 1299           | 1                 | 1                    | Alta         |  |
|              | Dois irmãos do                |                |                   |                      |              |  |
|              | Tocantins                     | 7261           | 0,003333          | 1                    | Alta         |  |
|              | Esperantina                   | 8375           | 1                 | 1                    | Alta         |  |
|              | Goiatins                      | 11982          | 0,005             | 1                    | Alta         |  |
| TO           | Ipueiras                      | 1754           | 1                 | 1                    | Alta         |  |
|              | Itapiratins                   | 3521           | 0,01              | 1                    | Alta         |  |
|              | Juarina                       | 2200           | 1                 | 1                    | Alta         |  |
|              | Novo alegre                   | 1848           | 1                 | 1                    | Alta         |  |
|              | Palmeirante                   | 4837           | 1                 | 1                    | Alta         |  |
|              | Porto nacional                | 46598          | 0,000323          | 1                    | Alta         |  |
|              | Riachinho                     | 3798           | 1                 | 1                    | Alta         |  |
|              | Rio dos bois                  | 2150           | 1                 | 1                    | Alta         |  |
|              | Sampaio                       | 3788           | 1                 | 1                    | Alta         |  |
|              | São bento do                  | 4583           | 0,003333          | 1                    | Alta         |  |
|              | Tocantins                     | +303           | 0,003333          | 1                    | Alta         |  |
| São Félix do |                               | 1451           | 1                 | 1                    | Alta         |  |
|              | Tocantins                     | 1.01           | •                 | -                    | 11100        |  |
|              | Sitio novo do                 | 9568           | 1                 | 1                    | Alta         |  |
|              | Tocantins                     |                |                   |                      |              |  |
|              | Tocantinia                    | 6866           | 0,001667          | 1                    | Alta         |  |
|              | Xambioá                       | 11160          | 0,004291          | 1                    | Alta         |  |
|              | Aparecida do Rio              | 4140           | 1                 | 0,997695             | Alta         |  |
|              | Negro<br>Dianánalia           | 10150          | 0.000714          | 0.052469             | A 14 a       |  |
|              | Dianópolis<br>Natividado      | 19158          | 0,000714          | 0,952468             | Alta         |  |
|              | Natividade<br>Araguaína       | 9355<br>119128 | 0,001<br>5,24E-05 | 0,917849<br>0,877332 | Alta<br>Alta |  |
|              | Araguania<br>Araguaçu         | 9244           | 0,002             | 0,87501              | Alta         |  |
|              | Colinas do                    |                | ,                 |                      |              |  |
|              | Tocantins                     | 30190          | 0,000476          | 0,837866             | Alta         |  |
|              | 1 Ocultins                    |                |                   |                      |              |  |

| São Miguel do Tocantins         10536         0,002         0,815206         Alta           Marianópolis do Tocantins         4616         1         0,804483         Alta           Miracema do Tocantins         20194         0,000833         0,713375         Média           Divinópolis do Tocantins         6549         0,002         0,664029         Média           Parana         10794         0,0025         0,63648         Média           Lajeado         2219         1         0,583083         Média           Praia norte         7267         0,005         0,566373         Média           Aurora do         3486         0,005         0,520784         Média           Aurora do         3486         0,005         0,520784         Média           Tocantins         5860         0,01         0,484492         Regular           Nova Olinda         10835         0,000769         0,433539         Regular           Santa Tereza do         2366         1         0,417725         Regular           Ponte alta do bom         4660         0,005         0,402351         Regular           Santa Fédo         5773         0,003333         0,364963         Regular      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ponte alta do<br>Tocantins | 6763  | 0,005    | 0,831848 | Alta    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------|----------|----------|---------|
| Tocantins         4616         1         0,804485         Alta           Miracema do         20194         0,000833         0,713375         Média           Divinópolis do         6549         0,002         0,664029         Média           Paranã         10794         0,0025         0,563648         Média           Paranã         10794         0,0025         0,583083         Média           Paranã         10794         0,0025         0,566373         Média           Aurora do         2219         1         0,583083         Média           Aurora do         3486         0,005         0,520784         Média           Aliança do         5860         0,01         0,484492         Regular           Nova Olinda         10835         0,000769         0,433539         Regular           Nova Olinda         10835         0,000769         0,433539         Regular           Santa Tereza do         2366         1         0,417725         Regular           Ponte alta do bom         4660         0,005         0,402351         Regular           Santa fé do         5773         0,003333         0,364963         Regular           Peixe         90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | 10536 | 0,002    | 0,815206 | Alta    |
| Tocantins         20194         0,000833         0,713375         Media           Divinópolis do Tocantins         6549         0,002         0,664029         Média           Paranã         10794         0,0025         0,63648         Média           Lajeado         2219         1         0,583083         Média           Aurora do         3486         0,005         0,566373         Média           Aurora do         3486         0,005         0,520784         Média           Aliança do         5860         0,01         0,484492         Regular           Nova Olinda         10835         0,000769         0,433539         Regular           Luzinópolis         2874         1         0,431377         Regular           Santa Tereza do         2366         1         0,417725         Regular           Ponte alta do bom         Jesus         4660         0,005         0,402351         Regular           Jesus         4660         0,005         0,402351         Regular           Recursolândia         3777         1         0,38802         Regular           Peixe         9002         0,001429         0,357488         Regular           Novo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                          | 4616  | 1        | 0,804483 | Alta    |
| Tocantins         6549         0,002         0,664029         Media           Parană         10794         0,0025         0,63648         Média           Lajeado         2219         1         0,583083         Média           Praia norte         7267         0,005         0,566373         Média           Aurora do         3486         0,005         0,520784         Média           Aliança do         5860         0,01         0,484492         Regular           Nova Olinda         10835         0,000769         0,433539         Regular           Santa Tereza do         2366         1         0,417725         Regular           Santa Tereza do         2366         1         0,417725         Regular           Ponte alta do bom Jesus         4660         0,005         0,402351         Regular           Ponte alta do bom Jesus         4660         0,005         0,402351         Regular           Santa fé do         5773         0,003333         0,364963         Regular           Peixe         9002         0,001429         0,357488         Regular           Novo acordo         3870         0,01         0,355631         Regular           Fatima </td <td></td> <td>20194</td> <td>0,000833</td> <td>0,713375</td> <td>Média</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            | 20194 | 0,000833 | 0,713375 | Média   |
| Lajeado         2219         1         0,583083         Média           Praia norte         7267         0,005         0,566373         Média           Aurora do         3486         0,005         0,520784         Média           Aurora do         5860         0,001         0,484492         Regular           Aliança do         5860         0,00769         0,433539         Regular           Nova Olinda         10835         0,000769         0,433539         Regular           Santa Tereza do         2366         1         0,417725         Regular           Santa Tereza do         2366         1         0,417725         Regular           Ponte alta do bom         4660         0,005         0,402351         Regular           Recursolândia         3777         1         0,38802         Regular           Santa fé do         5773         0,003333         0,364963         Regular           Peixe         9002         0,001429         0,357488         Regular           Filadélfia         8007         1         0,357322         Regular           Foresidente         3876         0,01         0,355631         Regular           Fexima <td< td=""><td><u>-</u></td><td>6549</td><td>0,002</td><td>0,664029</td><td>Média</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>-</u>                   | 6549  | 0,002    | 0,664029 | Média   |
| Praia norte         7267         0,005         0,566373         Média           Aurora do         3486         0,005         0,520784         Média           Aliança do         5860         0,01         0,484492         Regular           Nova Olinda         10835         0,000769         0,433539         Regular           Luzinópolis         2874         1         0,431377         Regular           Santa Tereza do         2366         1         0,417725         Regular           Ponte alta do bom Jesus         4660         0,005         0,402351         Regular           Ponte alta do bom Jesus         4660         0,005         0,402351         Regular           Santa fé do         5773         0,003333         0,364963         Regular           Santa fé do         5773         0,003333         0,364963         Regular           Filadélfia         8007         1         0,357322         Regular           Filadélfia         8007         1         0,357322         Regular           Novo acordo         3870         0,01         0,355631         Regular           Presidente         3785         0,002         0,3203         Regular <td< td=""><td>Paranã</td><td>10794</td><td>0,0025</td><td>0,63648</td><td>Média</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Paranã                     | 10794 | 0,0025   | 0,63648  | Média   |
| Aurora do<br>Tocantins         3486         0,005         0,520784         Média           Aliança do<br>Tocantins         5860         0,01         0,484492         Regular           Nova Olinda         10835         0,000769         0,433539         Regular           Luzinópolis         2874         1         0,431377         Regular           Santa Tereza do<br>Tocantins         2366         1         0,417725         Regular           Ponte alta do bom<br>Jesus         4660         0,005         0,402351         Regular           Recursolândia         3777         1         0,38802         Regular           Recursolândia         3777         1         0,38802         Regular           Santa fé do<br>Araguaia         5773         0,003333         0,364963         Regular           Peixe         9002         0,001429         0,357488         Regular           Novo acordo         3870         0,01         0,355631         Regular           Novo acordo         3870         0,01         0,355631         Regular           Presidente         3785         0,002         0,3203         Regular           Kennedy         9im         6598         1         0,310574         Regu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lajeado                    | 2219  | 1        | 0,583083 | Média   |
| Tocantins         3486         0,005         0,320784         Media           Aliança do Tocantins         5860         0,01         0,484492         Regular           Nova Olinda         10835         0,000769         0,433539         Regular           Luzinópolis         2874         1         0,431377         Regular           Santa Tereza do Tocantins         2366         1         0,417725         Regular           Ponte alta do bom Jesus         4660         0,005         0,402351         Regular           Recursolândia         3777         1         0,38802         Regular           Santa fé do Araguaia         5773         0,003333         0,364963         Regular           Peixe         9002         0,001429         0,357488         Regular           Filadélfia         8007         1         0,357322         Regular           Novo acordo         3870         0,01         0,355631         Regular           Presidente         3785         0,002         0,3203         Regular           Kennedy         9ium         6598         1         0,310574         Regular           Novo jardim         2492         1         0,298037         Regular     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Praia norte                | 7267  | 0,005    | 0,566373 | Média   |
| Nova Olinda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Aurora do                  | 3186  | 0.005    | 0.520784 | Mádia   |
| Tocantins         3860         0,01         0,4844492         Regular           Nova Olinda         10835         0,000769         0,433539         Regular           Luzinópolis         2874         1         0,431377         Regular           Santa Tereza do<br>Tocantins         2366         1         0,417725         Regular           Ponte alta do bom<br>Jesus         4660         0,005         0,402351         Regular           Recursolândia         3777         1         0,38802         Regular           Santa fé do<br>Araguaia         5773         0,003333         0,364963         Regular           Peixe         9002         0,001429         0,357488         Regular           Filadélfia         8007         1         0,357322         Regular           Novo acordo         3870         0,01         0,355631         Regular           Fatima         4101         0,005         0,344656         Regular           Fexidente         3785         0,002         0,3203         Regular           Kennedy         Pium         6598         1         0,310574         Regular           Novo jardim         2492         1         0,298037         Regular     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Tocantins                  | 3400  | 0,003    | 0,320764 | Media   |
| Nova Olinda         10835         0,000769         0,433539         Regular           Luzinópolis         2874         1         0,431377         Regular           Santa Tereza do Tocantins         2366         1         0,417725         Regular           Ponte alta do bom Jesus         4660         0,005         0,402351         Regular           Recursolândia         3777         1         0,38802         Regular           Santa fé do         5773         0,003333         0,364963         Regular           Santa fé do         Araguaia         5773         0,003333         0,364963         Regular           Peixe         9002         0,001429         0,357488         Regular           Novo acordo         3870         0,01         0,357322         Regular           Fatima         4101         0,005         0,344656         Regular           Presidente         3785         0,002         0,3203         Regular           Kennedy         9ium         6598         1         0,310574         Regular           Arapoema         7034         0,01         0,30709         Regular           Novo jardim         2492         1         0,298037         Regular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Aliança do                 | 5860  | 0.01     | 0.484402 | Dagular |
| Luzinópolis         2874         1         0,431377         Regular           Santa Tereza do Tocantins         2366         1         0,417725         Regular           Ponte alta do bom Jesus         4660         0,005         0,402351         Regular           Recursolândia         3777         1         0,38802         Regular           Santa fé do Araguaia         5773         0,003333         0,364963         Regular           Peixe         9002         0,001429         0,357488         Regular           Filadélfia         8007         1         0,357322         Regular           Novo acordo         3870         0,01         0,357322         Regular           Fatima         4101         0,005         0,344656         Regular           Presidente         3785         0,002         0,3203         Regular           Kennedy         3785         0,002         0,3203         Regular           Novo jardim         2492         1         0,310574         Regular           Rio sono         6345         0,001         0,30709         Regular           Rio sono         6345         0,005         0,284014         Regular           Ronetarins <td>Tocantins</td> <td>3800</td> <td>0,01</td> <td>0,404492</td> <td>Regulai</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Tocantins                  | 3800  | 0,01     | 0,404492 | Regulai |
| Santa Tereza do Tocantins         2366         1         0,417725         Regular           Ponte alta do bom Jesus         4660         0,005         0,402351         Regular           Recursolândia         3777         1         0,38802         Regular           Santa fé do Araguaia         5773         0,003333         0,364963         Regular           Peixe         9002         0,001429         0,357488         Regular           Filadélfia         8007         1         0,357322         Regular           Novo acordo         3870         0,01         0,355631         Regular           Fatima         4101         0,005         0,344656         Regular           Presidente         3785         0,002         0,3203         Regular           Kennedy         3785         0,002         0,3203         Regular           Pium         6598         1         0,310574         Regular           Novo jardim         2492         1         0,298037         Regular           Rio sono         6345         0,005         0,284014         Regular           Palmeiras do         4672         0,01         0,278974         Regular           Morte do Carmo <td>Nova Olinda</td> <td>10835</td> <td>0,000769</td> <td>0,433539</td> <td>Regular</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Nova Olinda                | 10835 | 0,000769 | 0,433539 | Regular |
| Tocantins         2366         1         0,417/25         Regular           Ponte alta do bom Jesus         4660         0,005         0,402351         Regular           Recursolândia         3777         1         0,38802         Regular           Santa fé do Araguaia         5773         0,003333         0,364963         Regular           Peixe         9002         0,001429         0,357488         Regular           Filadélfia         8007         1         0,357322         Regular           Novo acordo         3870         0,01         0,355631         Regular           Fatima         4101         0,005         0,344656         Regular           Presidente         3785         0,002         0,3203         Regular           Kennedy         3785         0,002         0,3203         Regular           Pium         6598         1         0,310574         Regular           Arapoema         7034         0,01         0,30709         Regular           Novo jardim         2492         1         0,298037         Regular           Rio sono         6345         0,005         0,284014         Regular           Palmeiras do         4672 <td>Luzinópolis</td> <td>2874</td> <td>1</td> <td>0,431377</td> <td>Regular</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Luzinópolis                | 2874  | 1        | 0,431377 | Regular |
| Ponte alta do bom Jesus  Recursolândia S777  1  0,38802  Regular  Recursolândia S777  1  0,038802  Regular  Santa fé do Araguaia Peixe 9002  0,001429  0,357488  Regular  Filadélfia 8007  1  0,357322  Regular  Novo acordo 3870  0,01  0,355631  Regular  Fatima 4101  0,005  0,344656  Regular  Presidente Kennedy Pium 6598  1  0,310574  Arapoema 7034  0,01  0,30709  Regular  Novo jardim 2492  1  Rio sono 6345  0,005  0,284014  Regular  Palmeiras do Tocantins Monte do Carmo 6586  0,005  0,276191  Regular  Regular  Nova Rosalandia 3888  0,003333  0,205138  Baixa  Marilândia do Tocantins  Pedro Afonso 10605  0,005  0,145496  Baixa  Confusão                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Santa Tereza do            | 2266  | 1        | 0.417725 | Dagular |
| Jesus         4660         0,005         0,402351         Regular           Recursolândia         3777         1         0,38802         Regular           Santa fé do         5773         0,003333         0,364963         Regular           Peixe         9002         0,001429         0,357488         Regular           Filadélfia         8007         1         0,357322         Regular           Novo acordo         3870         0,01         0,355631         Regular           Fatima         4101         0,005         0,344656         Regular           Fersidente         3785         0,002         0,3203         Regular           Kennedy         3785         0,002         0,3203         Regular           Pium         6598         1         0,310574         Regular           Novo jardim         2492         1         0,298037         Regular           Novo jardim         2492         1         0,298037         Regular           Rio sono         6345         0,005         0,284014         Regular           Palmeiras do         4672         0,01         0,278974         Regular           Moricilândia         2935         0,01 </td <td>Tocantins</td> <td>2300</td> <td>1</td> <td>0,417723</td> <td>Regulai</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tocantins                  | 2300  | 1        | 0,417723 | Regulai |
| Jesus         Jesus         Jesus           Recursolândia         3777         1         0,38802         Regular           Santa fé do Araguaia         5773         0,003333         0,364963         Regular           Peixe         9002         0,001429         0,357488         Regular           Filadélfia         8007         1         0,357322         Regular           Novo acordo         3870         0,01         0,355631         Regular           Fatima         4101         0,005         0,344656         Regular           Presidente         3785         0,002         0,3203         Regular           Kennedy         3785         0,002         0,3203         Regular           Pium         6598         1         0,310574         Regular           Novo jardim         2492         1         0,298037         Regular           Novo jardim         2492         1         0,298037         Regular           Rio sono         6345         0,005         0,284014         Regular           Palmeiras do         4672         0,01         0,278974         Regular           Monte do Carmo         6586         0,005         0,276191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ponte alta do bom          | 1660  | 0.005    | 0.402251 | Dagulan |
| Santa fé do Araguaia         5773         0,003333         0,364963         Regular Regular Regular           Peixe         9002         0,001429         0,357488         Regular Regular Regular           Filadélfia         8007         1         0,357322         Regular Regular Regular Regular           Novo acordo         3870         0,01         0,355631         Regular Regular Regular Regular           Presidente         3785         0,002         0,3203         Regular Regular Regular Regular Arapoema           Novo jardim         2492         1         0,298037         Regular Regula | Jesus                      | 4000  | 0,003    | 0,402331 | Regular |
| Araguaia         57/3         0,003333         0,364963         Regular           Peixe         9002         0,001429         0,357488         Regular           Filadélfia         8007         1         0,357322         Regular           Novo acordo         3870         0,01         0,355631         Regular           Fatima         4101         0,005         0,344656         Regular           Presidente         3785         0,002         0,3203         Regular           Kennedy         9ium         6598         1         0,310574         Regular           Arapoema         7034         0,01         0,30709         Regular           Novo jardim         2492         1         0,298037         Regular           Rio sono         6345         0,005         0,284014         Regular           Palmeiras do         4672         0,01         0,278974         Regular           Monte do Carmo         6586         0,005         0,276191         Regular           Muricilândia         2935         0,01         0,275525         Regular           Nova Rosalandia         3888         0,003333         0,205138         Baixa           Marilândia do<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Recursolândia              | 3777  | 1        | 0,38802  | Regular |
| Araguna         Peixe         9002         0,001429         0,357488         Regular           Filadélfia         8007         1         0,357322         Regular           Novo acordo         3870         0,01         0,355631         Regular           Fatima         4101         0,005         0,344656         Regular           Presidente         3785         0,002         0,3203         Regular           Kennedy         7034         0,01         0,310574         Regular           Arapoema         7034         0,01         0,30709         Regular           Novo jardim         2492         1         0,298037         Regular           Rio sono         6345         0,005         0,284014         Regular           Palmeiras do         4672         0,01         0,278974         Regular           Monte do Carmo         6586         0,005         0,276191         Regular           Muricilândia         2935         0,01         0,275525         Regular           Centenário         2457         1         0,209684         Baixa           Nova Rosalandia         3888         0,003333         0,205138         Baixa           Marilândia do </td <td>Santa fé do</td> <td>5772</td> <td>0.002222</td> <td>0.364063</td> <td>Dogular</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Santa fé do                | 5772  | 0.002222 | 0.364063 | Dogular |
| Filadélfia         8007         1         0,357322         Regular           Novo acordo         3870         0,01         0,355631         Regular           Fatima         4101         0,005         0,344656         Regular           Presidente         3785         0,002         0,3203         Regular           Kennedy         6598         1         0,310574         Regular           Pium         6598         1         0,310574         Regular           Arapoema         7034         0,01         0,30709         Regular           Novo jardim         2492         1         0,298037         Regular           Rio sono         6345         0,005         0,284014         Regular           Palmeiras do         4672         0,01         0,278974         Regular           Monte do Carmo         6586         0,005         0,276191         Regular           Muricilândia         2935         0,01         0,275525         Regular           Centenário         2457         1         0,209684         Baixa           Nova Rosalandia         3888         0,003333         0,205138         Baixa           Tocantins         1         0,01<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Araguaia                   | 3113  | 0,003333 | 0,304903 | Regulai |
| Novo acordo         3870         0,01         0,355631         Regular           Fatima         4101         0,005         0,344656         Regular           Presidente         3785         0,002         0,3203         Regular           Kennedy         6598         1         0,310574         Regular           Pium         6598         1         0,30709         Regular           Arapoema         7034         0,01         0,30709         Regular           Novo jardim         2492         1         0,298037         Regular           Rio sono         6345         0,005         0,284014         Regular           Palmeiras do         4672         0,01         0,278974         Regular           Monte do Carmo         6586         0,005         0,276191         Regular           Muricilândia         2935         0,01         0,275525         Regular           Centenário         2457         1         0,209684         Baixa           Nova Rosalandia         3888         0,003333         0,205138         Baixa           Tocantins         3281         0,01         0,19856         Baixa           Pedro Afonso         10605                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Peixe                      | 9002  | 0,001429 | 0,357488 | Regular |
| Fatima         4101         0,005         0,344656         Regular           Presidente         3785         0,002         0,3203         Regular           Kennedy         6598         1         0,310574         Regular           Pium         6598         1         0,310574         Regular           Arapoema         7034         0,01         0,30709         Regular           Novo jardim         2492         1         0,298037         Regular           Rio sono         6345         0,005         0,284014         Regular           Palmeiras do         4672         0,01         0,278974         Regular           Palmeiras do         4672         0,01         0,278974         Regular           Muricilândia         2935         0,01         0,275525         Regular           Centenário         2457         1         0,209684         Baixa           Nova Rosalandia         3888         0,003333         0,205138         Baixa           Marilândia do         3281         0,01         0,19856         Baixa           Pedro Afonso         10605         0,005         0,191433         Baixa           Santa Maria do         2755                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Filadélfia                 | 8007  | 1        | 0,357322 | Regular |
| Presidente         3785         0,002         0,3203         Regular           Pium         6598         1         0,310574         Regular           Arapoema         7034         0,01         0,30709         Regular           Novo jardim         2492         1         0,298037         Regular           Rio sono         6345         0,005         0,284014         Regular           Palmeiras do         4672         0,01         0,278974         Regular           Palmeiras do         4672         0,01         0,278974         Regular           Monte do Carmo         6586         0,005         0,276191         Regular           Muricilândia         2935         0,01         0,275525         Regular           Centenário         2457         1         0,209684         Baixa           Nova Rosalandia         3888         0,0033333         0,205138         Baixa           Marilândia do         3281         0,01         0,19856         Baixa           Pedro Afonso         10605         0,005         0,191433         Baixa           Santa Maria do         2755         1         0,170045         Baixa           Lagoa da         8481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Novo acordo                | 3870  | 0,01     | 0,355631 | Regular |
| Kennedy         3785         0,002         0,3203         Regular           Pium         6598         1         0,310574         Regular           Arapoema         7034         0,01         0,30709         Regular           Novo jardim         2492         1         0,298037         Regular           Rio sono         6345         0,005         0,284014         Regular           Palmeiras do         4672         0,01         0,278974         Regular           Monte do Carmo         6586         0,005         0,276191         Regular           Muricilândia         2935         0,01         0,275525         Regular           Centenário         2457         1         0,209684         Baixa           Nova Rosalandia         3888         0,003333         0,205138         Baixa           Marilândia do         3281         0,01         0,19856         Baixa           Pedro Afonso         10605         0,005         0,191433         Baixa           Santa Maria do         2755         1         0,170045         Baixa           Lagoa da         8481         0,000769         0,145496         Baixa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fatima                     | 4101  | 0,005    | 0,344656 | Regular |
| Rennedy         Pium         6598         1         0,310574         Regular           Arapoema         7034         0,01         0,30709         Regular           Novo jardim         2492         1         0,298037         Regular           Rio sono         6345         0,005         0,284014         Regular           Palmeiras do         4672         0,01         0,278974         Regular           Monte do Carmo         6586         0,005         0,276191         Regular           Muricilândia         2935         0,01         0,275525         Regular           Centenário         2457         1         0,209684         Baixa           Nova Rosalandia         3888         0,003333         0,205138         Baixa           Marilândia do         3281         0,01         0,19856         Baixa           Pedro Afonso         10605         0,005         0,191433         Baixa           Santa Maria do         2755         1         0,170045         Baixa           Confusão         8481         0,000769         0,145496         Baixa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Presidente                 | 3785  | 0.002    | 0.3203   | Dagular |
| Arapoema         7034         0,01         0,30709         Regular           Novo jardim         2492         1         0,298037         Regular           Rio sono         6345         0,005         0,284014         Regular           Palmeiras do         4672         0,01         0,278974         Regular           Monte do Carmo         6586         0,005         0,276191         Regular           Muricilândia         2935         0,01         0,275525         Regular           Centenário         2457         1         0,209684         Baixa           Nova Rosalandia         3888         0,003333         0,205138         Baixa           Marilândia do         3281         0,01         0,19856         Baixa           Pedro Afonso         10605         0,005         0,191433         Baixa           Santa Maria do         2755         1         0,170045         Baixa           Lagoa da         8481         0,000769         0,145496         Baixa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Kennedy                    |       | 0,002    | ,        | Regulai |
| Novo jardim         2492         1         0,298037         Regular           Rio sono         6345         0,005         0,284014         Regular           Palmeiras do         4672         0,01         0,278974         Regular           Monte do Carmo         6586         0,005         0,276191         Regular           Muricilândia         2935         0,01         0,275525         Regular           Centenário         2457         1         0,209684         Baixa           Nova Rosalandia         3888         0,003333         0,205138         Baixa           Marilândia do         3281         0,01         0,19856         Baixa           Pedro Afonso         10605         0,005         0,191433         Baixa           Santa Maria do         2755         1         0,170045         Baixa           Lagoa da         8481         0,000769         0,145496         Baixa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pium                       | 6598  | 1        | 0,310574 | Regular |
| Rio sono         6345         0,005         0,284014         Regular           Palmeiras do Tocantins         4672         0,01         0,278974         Regular           Monte do Carmo         6586         0,005         0,276191         Regular           Muricilândia         2935         0,01         0,275525         Regular           Centenário         2457         1         0,209684         Baixa           Nova Rosalandia         3888         0,003333         0,205138         Baixa           Marilândia do Tocantins         3281         0,01         0,19856         Baixa           Pedro Afonso         10605         0,005         0,191433         Baixa           Santa Maria do Tocantins         2755         1         0,170045         Baixa           Lagoa da Confusão         8481         0,000769         0,145496         Baixa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Arapoema                   | 7034  | 0,01     | 0,30709  | Regular |
| Palmeiras do Tocantins         4672         0,01         0,278974         Regular           Monte do Carmo         6586         0,005         0,276191         Regular           Muricilândia         2935         0,01         0,275525         Regular           Centenário         2457         1         0,209684         Baixa           Nova Rosalandia         3888         0,003333         0,205138         Baixa           Marilândia do Tocantins         3281         0,01         0,19856         Baixa           Pedro Afonso         10605         0,005         0,191433         Baixa           Santa Maria do Tocantins         2755         1         0,170045         Baixa           Lagoa da Confusão         8481         0,000769         0,145496         Baixa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Novo jardim                | 2492  | 1        |          | Regular |
| Tocantins         4672         0,01         0,278974         Regular           Monte do Carmo         6586         0,005         0,276191         Regular           Muricilândia         2935         0,01         0,275525         Regular           Centenário         2457         1         0,209684         Baixa           Nova Rosalandia         3888         0,0033333         0,205138         Baixa           Marilândia do         3281         0,01         0,19856         Baixa           Pedro Afonso         10605         0,005         0,191433         Baixa           Santa Maria do         2755         1         0,170045         Baixa           Lagoa da         8481         0,000769         0,145496         Baixa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | 6345  | 0,005    | 0,284014 | Regular |
| Monte do Carmo         6586         0,005         0,276191         Regular           Muricilândia         2935         0,01         0,275525         Regular           Centenário         2457         1         0,209684         Baixa           Nova Rosalandia         3888         0,003333         0,205138         Baixa           Marilândia do Tocantins         3281         0,01         0,19856         Baixa           Pedro Afonso         10605         0,005         0,191433         Baixa           Santa Maria do Tocantins         2755         1         0,170045         Baixa           Lagoa da Confusão         8481         0,000769         0,145496         Baixa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            | 4672  | 0.01     | 0 278974 | Regular |
| Muricilândia         2935         0,01         0,275525         Regular           Centenário         2457         1         0,209684         Baixa           Nova Rosalandia         3888         0,003333         0,205138         Baixa           Marilândia do Tocantins         3281         0,01         0,19856         Baixa           Pedro Afonso         10605         0,005         0,191433         Baixa           Santa Maria do Tocantins         2755         1         0,170045         Baixa           Lagoa da Confusão         8481         0,000769         0,145496         Baixa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | 4072  | 0,01     | 0,27077  | Regulai |
| Centenário         2457         1         0,209684         Baixa           Nova Rosalandia         3888         0,003333         0,205138         Baixa           Marilândia do Tocantins         3281         0,01         0,19856         Baixa           Pedro Afonso         10605         0,005         0,191433         Baixa           Santa Maria do Tocantins         2755         1         0,170045         Baixa           Lagoa da Confusão         8481         0,000769         0,145496         Baixa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |       | 0,005    | 0,276191 | _       |
| Nova Rosalandia         3888         0,003333         0,205138         Baixa           Marilândia do Tocantins         3281         0,01         0,19856         Baixa           Pedro Afonso         10605         0,005         0,191433         Baixa           Santa Maria do Tocantins         2755         1         0,170045         Baixa           Lagoa da Confusão         8481         0,000769         0,145496         Baixa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | 2935  | 0,01     | 0,275525 | Regular |
| Marilândia do Tocantins         3281         0,01         0,19856         Baixa           Pedro Afonso         10605         0,005         0,191433         Baixa           Santa Maria do Tocantins         2755         1         0,170045         Baixa           Lagoa da Confusão         8481         0,000769         0,145496         Baixa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | 2457  |          |          |         |
| Tocantins         3281         0,01         0,19856         Baixa           Pedro Afonso         10605         0,005         0,191433         Baixa           Santa Maria do Tocantins         2755         1         0,170045         Baixa           Lagoa da Confusão         8481         0,000769         0,145496         Baixa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | 3888  | 0,003333 | 0,205138 | Baixa   |
| Santa Maria do Tocantins         2755         1         0,170045         Baixa           Lagoa da Confusão         8481         0,000769         0,145496         Baixa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | 3281  | 0,01     | 0,19856  | Baixa   |
| Tocantins         2/55         1         0,170045         Baixa           Lagoa da Confusão         8481         0,000769         0,145496         Baixa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pedro Afonso               | 10605 | 0,005    | 0,191433 | Baixa   |
| Lagoa da Confusão 8481 0,000769 0,145496 Baixa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Santa Maria do             | 2755  | 1        | 0.170045 | Daiwa   |
| Confusão 8481 0,000/69 0,145496 Baixa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Tocantins                  | 4133  | 1        | 0,170043 | Daixa   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                          | 8481  | 0,000769 | 0,145496 | Baixa   |
| 344 do 10cantino 3700 0,003 0,143212 Daixa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Jau do Tocantins           | 3906  | 0,005    | 0,145212 | Baixa   |

| Ananás                        | 9615  | 0,0025   | 0,128412 | Baixa |
|-------------------------------|-------|----------|----------|-------|
| Aguiarnopolis                 | 4120  | 0,005    | 0,118155 | Baixa |
| Pindorama do<br>Tocantins     | 4521  | 1        | 0,115179 | Baixa |
| São Sebastiao do<br>Tocantins | 4373  | 0,01     | 0,103072 | Baixa |
| Bernardo Sayao                | 4648  | 0,005    | 0,094331 | Baixa |
| Mateiros                      | 1788  | 0,01005  | 0,076931 | Baixa |
| Augustinópolis                | 15248 | 0,0004   | 0,076366 | Baixa |
| Pau d'arco                    | 4909  | 0,01     | 0,073328 | Baixa |
| Sucupira                      | 1718  | 0,01     | 0,066999 | Baixa |
| Axixá do<br>Tocantins         | 9175  | 0,001429 | 0,052291 | Baixa |

## **APENDICE H1:**

Tabela 148: Eficiência do Estado do MARANHÃO e DMU, ano 2009.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                        | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por<br>Tamanho da<br>População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|----------------------------|-----------|----------------------------------------------|------------------------------------------------------------------|---------------|
|                                                  | Açailândia                 | 101130    | 9,17E-05                                     | 1                                                                | Alta          |
|                                                  | Alto alegre do<br>Maranhão | 22914     | 0,000909                                     | 1                                                                | Alta          |
|                                                  | Anajatuba                  | 25063     | 0,005                                        | 1                                                                | Alta          |
|                                                  | Bacabal                    | 98489     | 0,000189                                     | 1                                                                | Alta          |
|                                                  | Bequimão                   | 21508     | 0,01                                         | 1                                                                | Alta          |
|                                                  | Central do<br>Maranhão     | 9246      | 1                                            | 1                                                                | Alta          |
|                                                  | Centro novo do<br>Maranhão | 15668     | 1                                            | 1                                                                | Alta          |
|                                                  | Estreito                   | 27756     | 0,000435                                     | 1                                                                | Alta          |
|                                                  | Imperatriz                 | 236691    | 2,92E-05                                     | 1                                                                | Alta          |
| MA                                               | Itaipava do Grajaú         | 13964     | 1                                            | 1                                                                | Alta          |
|                                                  | Joao Lisboa                | 20395     | 0,01                                         | 1                                                                | Alta          |
|                                                  | Maracaçumé                 | 18414     | 0,005                                        | 1                                                                | Alta          |
|                                                  | Mirador                    | 19991     | 0,002                                        | 1                                                                | Alta          |
|                                                  | Paco do lumiar             | 103958    | 0,00025                                      | 1                                                                | Alta          |
|                                                  | Palmeirândia               | 18772     | 0,005                                        | 1                                                                | Alta          |
|                                                  | Paraibano                  | 20255     | 0,001429                                     | 1                                                                | Alta          |
|                                                  | Pedro do Rosário           | 22856     | 0,01                                         | 1                                                                | Alta          |
|                                                  | Penalva                    | 34907     | 0,000588                                     | 1                                                                | Alta          |
|                                                  | Porto franco               | 19503     | 0,000556                                     | 1                                                                | Alta          |
|                                                  | Riachão                    | 21672     | 0,00125                                      | 1                                                                | Alta          |
|                                                  | Santa Luzia                | 71455     | 0,002086                                     | 1                                                                | Alta          |
|                                                  | Santa Luzia do<br>Paruá    | 20190     | 0,001111                                     | 1                                                                | Alta          |

| São Luís                   | 997098 | 9,51E-06 | 1        | Alta               |
|----------------------------|--------|----------|----------|--------------------|
| Senador<br>Alexandre costa | 9414   | 1        | 1        | Alta               |
| Senador la Rocque          | 19359  | 1        | 1        | Alta               |
| Trizidela do vale          | 19104  | 0,0025   | 1        | Alta               |
| Turilândia                 | 21102  | 0,002    | 1        | Alta               |
| Vargem grande              | 45630  | 0,000476 | 1        | Alta               |
| São Bento                  | 39312  | 0,000833 | 0,95192  | Alta               |
| Balsas                     | 83617  | 0,000159 | 0,897876 | Alta               |
| Arame                      | 27750  | 0,000435 | 0,88931  | Alta               |
| Nova Iorque                | 5087   | 1        | 0,883764 | Alta               |
| Lago da pedra              | 44272  | 0,000455 | 0,853373 | Alta               |
| Viana                      | 49348  | 0,000526 | 0,841606 | Alta               |
| Timbiras                   | 26909  | 0,000320 | 0,83571  | Alta               |
| Raposa                     | 25837  | 0,001007 | 0,834567 | Alta               |
| Coroatá                    | 63081  | 0,000833 | 0,816437 | Alta               |
| Codó                       | 113937 | 0,000833 | 0,810437 | Alta               |
| Bacabeira                  | 15574  | 0,000280 | *        |                    |
|                            |        |          | 0,805449 | Alta               |
| Pinheiro                   | 77182  | 0,000154 | 0,794001 | Alta               |
| Alto alegre do<br>Pindaré  | 33211  | 0,002857 | 0,785517 | Alta               |
| Turiaçu                    | 33649  | 0,001    | 0,783306 | Alta               |
| São Domingos do            | 33506  | 0,00125  | 0,780838 | Alta               |
| Maranhão                   |        | •        |          |                    |
| Santa Inês                 | 85701  | 0,000222 | 0,71946  | Média              |
| Apicum-acu                 | 13890  | 0,003333 | 0,715343 | Média              |
| Rosário                    | 39627  | 0,000909 | 0,678821 | Média              |
| São Mateus do<br>Maranhão  | 39622  | 0,000417 | 0,629633 | Média              |
| Buriticupu                 | 64685  | 0,000204 | 0,624155 | Média              |
| Arari                      | 28787  | 0,002    | 0,594247 | Média              |
| Bernardo do                |        | 0,002    | •        | Media              |
| Mearim                     | 6249   | 1        | 0,552455 | Média              |
| Governador                 |        |          |          |                    |
| Archer                     | 10330  | 0,005    | 0,456069 | Regular            |
| São Raimundo das           |        |          |          |                    |
| mangabeiras                | 16594  | 0,036363 | 0,455438 | Regular            |
| Monção                     | 28602  | 0,002    | 0,441789 | Dagular            |
| Paulo ramos                | 16236  | 0,002    | 0,441789 | Regular<br>Regular |
|                            | 10230  | 0,00123  | 0,440462 | Regulai            |
| Santo Antônio dos          | 14663  | 0,003333 | 0,434125 | Regular            |
| Lopes                      | 12492  | 0.002222 | 0.402225 | Dagulan            |
| Peri mirim                 |        | 0,003333 | 0,403335 | Regular            |
| Satubinha                  | 8715   | 1        | 0,342404 | Regular            |
| Governador Luiz rocha      | 7144   | 1        | 0,322973 | Regular            |
| Carutapera                 | 21121  | 0,000909 | 0,307753 | Regular            |
| Buriti bravo               | 23074  | 0,001429 | 0,279657 | Regular            |
| Sambaíba                   | 6038   | 1        | 0,21658  | Baixa              |
| Boa vista do               |        | -        | ŕ        |                    |
| Gurupi                     | 7895   | 0,001667 | 0,166273 | Baixa              |
| <b>r</b> -                 |        |          |          |                    |

| Feira nova do                   | 7899  | 1        | 0,149262 | Baixa |
|---------------------------------|-------|----------|----------|-------|
| Maranhão<br>Esperantinópolis    | 18815 | 0,000909 | 0,131414 | Baixa |
| Pio XII<br>Vila nova dos        | 22220 | 0,00125  | 0,10183  | Baixa |
| martírios                       | 9185  | 0,005    | 0,05415  | Baixa |
| Alto Parnaíba                   | 10640 | 0,001429 | 0,024602 | Baixa |
| Presidente Sarney<br>Presidente | 16325 | 0,003333 | 0,01848  | Baixa |
| Juscelino                       | 12382 | 0,025949 | 0,006006 | Baixa |

## **APENDICE H2:**

Tabela 149: Eficiência do Estado do PARÁ e DMU, ano 2009.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                          | População | Eficiência<br>Total Geral<br>(eftg) | Eficiência<br>por<br>Tamanho da<br>População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|------------------------------|-----------|-------------------------------------|------------------------------------------------------------------|---------------|
|                                                  | Acara                        | 48501     | 0,000769                            | 1                                                                | Alta          |
|                                                  | Alenquer                     | 57067     | 0,000556                            | 1                                                                | Alta          |
|                                                  | Almeirim                     | 31192     | 1                                   | 1                                                                | Alta          |
|                                                  | Anajás                       | 27386     | 0,01                                | 1                                                                | Alta          |
|                                                  | Augusto Corrêa               | 39317     | 0,005                               | 1                                                                | Alta          |
|                                                  | Bannach                      | 3947      | 0,022618                            | 1                                                                | Alta          |
|                                                  | Belém                        | 1437600   | 1,03E-05                            | 1                                                                | Alta          |
|                                                  | Canaã dos Carajás            | 27675     | 0,001094                            | 1                                                                | Alta          |
|                                                  | Garrafão do norte            | 25538     | 0,001429                            | 1                                                                | Alta          |
|                                                  | Gurupá                       | 25511     | 0,01                                | 1                                                                | Alta          |
|                                                  | Itaituba                     | 127848    | 0,000108                            | 1                                                                | Alta          |
|                                                  | Juruti                       | 35530     | 0,003333                            | 1                                                                | Alta          |
|                                                  | Mae do rio                   | 29087     | 0,000476                            | 1                                                                | Alta          |
| PA                                               | Melgaço                      | 17657     | 0,003333                            | 1                                                                | Alta          |
| rA                                               | Novo repartimento            | 55762     | 0,000213                            | 1                                                                | Alta          |
|                                                  | Ourilândia do norte          | 21327     | 0,000286                            | 1                                                                | Alta          |
|                                                  | Paragominas                  | 97350     | 0,000108                            | 1                                                                | Alta          |
|                                                  | Rio Maria                    | 17437     | 0,000588                            | 1                                                                | Alta          |
|                                                  | Santa Maria das<br>barreiras | 17778     | 0,000625                            | 1                                                                | Alta          |
|                                                  | Santo Antônio do<br>Tauá     | 26855     | 1                                   | 1                                                                | Alta          |
|                                                  | São Geraldo do<br>Araguaia   | 25027     | 0,00027                             | 1                                                                | Alta          |
|                                                  | São João do<br>Araguaia      | 11923     | 1                                   | 1                                                                | Alta          |
|                                                  | Soure                        | 22459     | 0,001667                            | 1                                                                | Alta          |

| Tome-acu          | 48607  | 0,000244 | 1        | Alta     |
|-------------------|--------|----------|----------|----------|
| Tucuruí           | 96010  | 6,85E-05 | 1        | Alta     |
| Ulianópolis       | 36020  | 0,000588 | 1        | Alta     |
| Afuá              | 32633  | 0,000625 | 0,985739 | Alta     |
| Dom Eliseu        | 39088  | 0,000385 | 0,938675 | Alta     |
| Braganca          | 107060 | 0,000909 | 0,908121 | Alta     |
| Moju              | 68600  | 0,000233 | 0,872567 | Alta     |
| Marapanim         | 28011  | 0,001429 | 0,840268 | Alta     |
| Breves            | 101094 | 0,00037  | 0,824154 | Alta     |
| Trairão           | 17134  | 0,01     | 0,796709 | Alta     |
| Baião             | 28299  | 0,00125  | 0,780854 | Alta     |
| Abaetetuba        | 139819 | 0,000152 | 0,760826 | Alta     |
| Terra santa       | 16004  | 0,0025   | 0,758885 | Alta     |
| Redenção          | 67064  | 8,26E-05 | 0,749315 | Média    |
| Vigia             | 46205  | 0,0005   | 0,675949 | Média    |
| Ananindeua        | 505512 | 1,75E-05 | 0,618122 | Média    |
| Primavera         | 10993  | 0,01     | 0,610612 | Média    |
| Castanhal         | 161497 | 6,71E-05 | 0,608953 | Média    |
| Maracanã          | 29417  | 0,002    | 0,592829 | Média    |
| Parauapebas       | 152777 | 5,78E-05 | 0,534932 | Média    |
| Abel Figueiredo   | 6967   | 0,000833 | 0,529693 | Média    |
| Pacajá            | 41953  | 0,000204 | 0,503086 | Média    |
| Igarapé-acu       | 35241  | 0,000909 | 0,485592 | Regular  |
| Jacareacanga      | 41487  | 0,005    | 0,47509  | Regular  |
| Cumaru do norte   | 11890  | 0,002    | 0,461542 | Regular  |
| Brejo grande do   | 7688   | 0,001667 | 0,381342 | Regular  |
| Araguaia          |        | ,        | ,        | · ·      |
| Colares           | 11433  | 0,0025   | 0,341354 | Regular  |
| Limoeiro do       | 24967  | 0,01     | 0,320789 | Regular  |
| Ajuru             | 2.507  | 0,01     | 0,820709 | riogarar |
| Nova Esperança    | 24062  | 0,000833 | 0,309661 | Regular  |
| do Piriá          |        | ,        | ,        | C        |
| Palestina do para | 7301   | 0,003333 | 0,296793 | Regular  |
| Santarém novo     | 6347   | 0,005    | 0,18297  | Baixa    |
| São Caetano de    | 16862  | 0,002    | 0,17458  | Baixa    |
| Odivelas          | 10002  | 0,002    | 0,17130  | Buina    |
| São Francisco do  | 11743  | 0,000769 | 0,119815 | Baixa    |
| Para              |        | ,        | ,        |          |
| Aveiro            | 20266  | 0,005    | 0,07252  | Baixa    |

## **APENDICE H3:**

Tabela 150: Eficiência do Estado de TOCANTINS e DMU, ano 2009.

| Unidade                               |     |           |                                     | Eficiência                                         |               |
|---------------------------------------|-----|-----------|-------------------------------------|----------------------------------------------------|---------------|
| Federada da<br>Amazônia<br>Legal (UF) | DMU | População | Eficiência<br>Total Geral<br>(eftg) | por<br>Tamanho da<br>População<br>( <i>eftfp</i> ) | Classificação |

|    | Ananás                       | 9514  | 0,005    | 1 | Alta |
|----|------------------------------|-------|----------|---|------|
|    | Aparecida do rio negro       | 4200  | 1        | 1 | Alta |
|    | Araguacema                   | 5591  | 0,001667 | 1 | Alta |
|    | Araguatins                   | 26771 | 0,000833 | 1 | Alta |
|    | Axixá do<br>Tocantins        | 9203  | 0,012154 | 1 | Alta |
|    | Bandeirantes do Tocantins    | 2807  | 1        | 1 | Alta |
|    | Bom jesus do Tocantins       | 2839  | 0,01     | 1 | Alta |
|    | Buriti do<br>Tocantins       | 8454  | 0,041555 | 1 | Alta |
|    | Campos lindos                | 8079  | 1        | 1 | Alta |
|    | Carmolandia                  | 2420  | 0,006819 | 1 | Alta |
|    | Chapada de areia             | 1273  | 1        | 1 | Alta |
|    | Combinado                    | 5070  | 1        | 1 | Alta |
|    | Conceição do<br>Tocantins    | 4541  | 1        | 1 | Alta |
|    | Crixas do<br>Tocantins       | 1289  | 1        | 1 | Alta |
|    | Dianópolis                   | 19524 | 0,000556 | 1 | Alta |
|    | Esperantina                  | 8445  | 1        | 1 | Alta |
| TO | Ipueiras                     | 1813  | 1        | 1 | Alta |
| 10 | Marianópolis do<br>Tocantins | 4743  | 1        | 1 | Alta |
|    | Miracema do<br>Tocantins     | 19740 | 0,000476 | 1 | Alta |
|    | Novo alegre                  | 1802  | 1        | 1 | Alta |
|    | Oliveira de<br>Fatima        | 1129  | 1        | 1 | Alta |
|    | Peixe                        | 9018  | 0,001272 | 1 | Alta |
|    | Pium                         | 6701  | 1        | 1 | Alta |
|    | Ponte alta do<br>Tocantins   | 6818  | 0,022405 | 1 | Alta |
|    | Porto alegre do<br>Tocantins | 2968  | 1        | 1 | Alta |
|    | Porto nacional               | 46722 | 0,000179 | 1 | Alta |
|    | Praia norte                  | 7310  | 0,0025   | 1 | Alta |
|    | Presidente<br>Kennedy        | 3784  | 1        | 1 | Alta |
|    | Riachinho                    | 3808  | 0,003333 | 1 | Alta |
|    | Rio dos bois                 | 2136  | 1        | 1 | Alta |
|    | Sampaio                      | 3886  | 0,016962 | 1 | Alta |
|    | Santa Maria do<br>Tocantins  | 2807  | 1        | 1 | Alta |
|    | São Bento do<br>Tocantins    | 4666  | 1        | 1 | Alta |
|    | São Félix do                 | 1468  | 1        | 1 | Alta |
|    |                              |       |          |   |      |

| Tocantins                    |               |          |          |         |
|------------------------------|---------------|----------|----------|---------|
| Tocantinia                   | 6971          | 0,005358 | 1        | Alta    |
| Xambioá                      | 11099         | 1        | 1        | Alta    |
| Dois irmãos do               |               |          |          |         |
| Tocantins                    | 7254          | 0,014974 | 0,954255 | Alta    |
| Palmas                       | 188645        | 4,59E-05 | 0,9206   | Alta    |
| Babaçulândia                 | 10698         | 0,001429 | 0,908923 | Alta    |
| Santa Fe do                  | 5 <b>5</b> 05 |          |          | A 1.    |
| Araguaia                     | 5795          | 0,0025   | 0,860714 | Alta    |
| Divinópolis do               | 6622          | 0.045145 | 0.020742 | A 1.    |
| Tocantins                    | 6623          | 0,045147 | 0,829742 | Alta    |
| Natividade                   | 9396          | 0,003009 | 0,824076 | Alta    |
| Aliança do                   | 5822          | 0,004603 | 0,799736 | Alta    |
| Tocantins                    | 3622          | 0,004003 | 0,799730 |         |
| Paraná                       | 10824         | 0,00125  | 0,778572 | Alta    |
| Filadélfia                   | 7978          | 0,001832 | 0,755278 | Alta    |
| Luzinópolis                  | 2959          | 0,0025   | 0,74859  | Média   |
| Colinas do                   | 30666         | 1        | 0,728303 | Média   |
| Tocantins                    | 30000         | 1        | 0,728303 | Media   |
| Carrasco bonito              | 3428          | 0,0025   | 0,693879 | Média   |
| Ponte alta do bom            | 4664          | 0,0025   | 0,571302 | Média   |
| Jesus                        |               | ,        | ,        |         |
| Talismã                      | 2663          | 0,005    | 0,558314 | Média   |
| Novo jardim                  | 2525          | 0,005    | 0,514499 | Média   |
| Itapiratins                  | 3543          | 1        | 0,511567 | Média   |
| Palmeirante                  | 4959          | 0,003333 | 0,511089 | Média   |
| Juarina                      | 2185          | 0,005    | 0,504211 | Média   |
| Lagoa da                     | 8711          | 0,001667 | 0,424393 | Regular |
| confusão                     |               |          |          | Regular |
| Araguaína                    | 119637        | 5,62E-05 | 0,414566 | Regular |
| Aurora do                    | 3523          | 0,005    | 0,396069 | Regular |
| Tocantins                    |               | ,        | ,        | · ·     |
| Augustinópolis               | 15469         | 0,000625 | 0,36864  | Regular |
| Novo acordo                  | 3950          | 1        | 0,341507 | Regular |
| Lajeado                      | 2204          | 0,003333 | 0,336847 | Regular |
| Centenário                   | 2485          | 1        | 0,320956 | Regular |
| Araguaçu                     | 9225          | 0,0025   | 0,312689 | Regular |
| Monte do Carmo               | 6723          | 0,01     | 0,302801 | Regular |
| Recursolândia                | 3839          | 1        | 0,281485 | Regular |
| Nova Rosalandia              | 3956          | 0,01     | 0,264228 | Regular |
| Aguiarnopolis                | 4216          | 0,01     | 0,253527 | Regular |
| Rio sono                     | 6366          | 0,005    | 0,236392 | Baixa   |
| Santa Tereza do<br>Tocantins | 2390          | 0,01     | 0,235083 | Baixa   |
| São Miguel do                | 10737         | 0,01     | 0,234369 | Baixa   |
| Tocantins                    |               | ,        | ,        |         |
| Sitio novo do                | 9568          | 0,003333 | 0,228319 | Baixa   |
| Tocantins Marilândia da      |               | •        | •        |         |
| Marilândia do                | 3322          | 0,01     | 0,214647 | Baixa   |
| Tocantins                    |               |          |          |         |

| Nova Olinda<br>Goianorte      | 10974<br>5426 | 0,001556<br>0,005 | 0,201338<br>0,157618 | Baixa<br>Baixa |
|-------------------------------|---------------|-------------------|----------------------|----------------|
| Goiatins                      | 12068         | 0,002             | 0,149315             | Baixa          |
| São Sebastiao do<br>Tocantins | 4441          | 0,01              | 0,134214             | Baixa          |
| Araguanã                      | 5248          | 0,002             | 0,102323             | Baixa          |
| Pedro Afonso                  | 10758         | 0,0025            | 0,10148              | Baixa          |
| Bernardo Sayao                | 4653          | 0,003333          | 0,098052             | Baixa          |
| Jau do Tocantins              | 3983          | 0,005             | 0,091177             | Baixa          |
| Pindorama do<br>Tocantins     | 4500          | 0,01              | 0,081036             | Baixa          |
| Aragominas                    | 5555          | 0,002             | 0,056544             | Baixa          |
| Pau d'arco                    | 4964          | 0,005             | 0,032461             | Baixa          |
| Arapoema                      | 7029          | 0,001429          | 0,022903             | Baixa          |
| Mateiros                      | 1802          | 0,01              | 0,010376             | Baixa          |

## **APENDICE I1:**

Tabela 151: Eficiência do Estado do MARANHÃO e DMU, ano 2010.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                          | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por<br>Tamanho da<br>População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|------------------------------|-----------|----------------------------------------------|------------------------------------------------------------------|---------------|
|                                                  | Açailândia                   | 104047    | 9,8E-05                                      | 1                                                                | Alta          |
|                                                  | Anajatuba                    | 25291     | 0,003291                                     | 1                                                                | Alta          |
|                                                  | Bacabeira                    | 14925     | 0,000417                                     | 1                                                                | Alta          |
|                                                  | Cajari                       | 18338     | 0,010786                                     | 1                                                                | Alta          |
|                                                  | Centro novo do<br>Maranhão   | 17622     | 1                                            | 1                                                                | Alta          |
|                                                  | Esperantinópolis             | 18452     | 0,000769                                     | 1                                                                | Alta          |
|                                                  | Feira nova do<br>Maranhão    | 8126      | 0,008154                                     | 1                                                                | Alta          |
|                                                  | Itaipava do Grajaú           | 14297     | 1                                            | 1                                                                | Alta          |
|                                                  | Joao Lisboa                  | 20381     | 0,003387                                     | 1                                                                | Alta          |
| MA                                               | Nova Iorque                  | 4590      | 1                                            | 1                                                                | Alta          |
|                                                  | Paraibano                    | 20103     | 0,001974                                     | 1                                                                | Alta          |
|                                                  | Paulo ramos                  | 20079     | 0,000833                                     | 1                                                                | Alta          |
|                                                  | Raposa                       | 26327     | 0,00077                                      | 1                                                                | Alta          |
|                                                  | São João do Soter            | 17238     | 0,002                                        | 1                                                                | Alta          |
|                                                  | São Luís                     | 1014837   | 8,92E-06                                     | 1                                                                | Alta          |
|                                                  | São Raimundo das mangabeiras | 17474     | 0,001486                                     | 1                                                                | Alta          |
|                                                  | Satubinha                    | 11990     | 0,058282                                     | 1                                                                | Alta          |
|                                                  | Trizidela do vale            | 18953     | 0,002308                                     | 1                                                                | Alta          |
|                                                  | Turiaçu                      | 33933     | 0,000833                                     | 1                                                                | Alta          |
|                                                  | São Bento                    | 40736     | 0,000833                                     | 0,983782                                                         | Alta          |
|                                                  | Santa Luzia do               | 22644     | 0,000663                                     | 0,936723                                                         | Alta          |

| Paruá                 |                    |          |          |         |
|-----------------------|--------------------|----------|----------|---------|
| Imperatriz            | 247505             | 2,97E-05 | 0,89229  | Alta    |
| Alto alegre do        | 21057              | ,        | ,        | A 1.    |
| Pindaré               | 31057              | 0,000714 | 0,886913 | Alta    |
| Lago da pedra         | 46083              | 0,00037  | 0,83894  | Alta    |
| Viana                 | 49496              | 0,000455 | 0,837538 | Alta    |
| Buriti bravo          | 22899              | 0,001667 | 0,835647 | Alta    |
| Apicum-acu            | 14959              | 0,002    | 0,811513 | Alta    |
| Balsas                | 83528              | 0,000156 | 0,804733 | Alta    |
| Vargem grande         | 49412              | 0,000476 | 0,79828  | Alta    |
| Arame                 | 31702              | 0,005088 | 0,796119 | Alta    |
| Santa Luzia           | 74043              | 0,000345 | 0,791163 | Alta    |
| Pinheiro              | 78162              | 0,000192 | 0,789339 | Alta    |
| Alto Parnaíba         | 10766              | 0,002    | 0,784913 | Alta    |
| Rosário               | 39576              | 0,000526 | 0,78172  | Alta    |
| São Mateus do         | 39093              | 0,000333 | 0,747103 | Média   |
| Maranhão              |                    | 0,000333 | 0,747103 | Wicdia  |
| Senador la Rocque     | 17998              | 0,005    | 0,744282 | Média   |
| Codó                  | 118038             | 0,000192 | 0,742582 | Média   |
| Estreito              | 35835              | 0,000278 | 0,729752 | Média   |
| Boa vista do          | 7949               | 0,001    | 0,665574 | Média   |
| Gurupi                |                    | ,        | ,        |         |
| Santa Inês            | 77282              | 0,000233 | 0,662141 | Média   |
| Monção                | 31738              | 0,001429 | 0,610468 | Média   |
| Palmeirândia          | 18764              | 0,002    | 0,60841  | Média   |
| Arari                 | 28488              | 0,000833 | 0,592474 | Média   |
| Coroatá               | 61725              | 0,001204 | 0,59055  | Média   |
| Penalva               | 34267              | 1        | 0,583088 | Média   |
| Itapecuru mirim       | 62110              | 0,000323 | 0,578782 | Média   |
| Sambaíba              | 5487               | 0,0025   | 0,572928 | Média   |
| Santo Antônio dos     | 14288              | 0,0025   | 0,528595 | Média   |
| Lopes                 | 65027              | ,        | ,        | 3.471   |
| Buriticupu            | 65237              | 1        | 0,524901 | Média   |
| Alto alegre do        | 24599              | 0,000769 | 0,509572 | Média   |
| Maranhão              |                    |          |          |         |
| Itinga do<br>Maranhão | 24863              | 0,000417 | 0,371187 | Regular |
| Governador            |                    |          |          |         |
| Archer                | 10205              | 0,01     | 0,361401 | Regular |
| Cantanhede            | 20448              | 0,005    | 0,310418 | Regular |
| Vila nova dos         | 20 <del>44</del> 6 | 0,003    | 0,310416 | Regulai |
| Martírios             | 11258              | 0,011951 | 0,299737 | Regular |
| Bequimão              | 20344              | 0,003333 | 0,296973 | Regular |
| Turilândia            | 22846              | 0,003333 | 0,262285 | Regular |
| Bacabal               | 100014             | 0,000154 | 0,247742 | Baixa   |
| Paco do lumiar        | 105121             | 0,000154 | 0,236409 | Baixa   |
| Maracaçumé            | 19155              | 0,003333 | 0,170091 | Baixa   |
| Riachão               | 20209              | 0,003533 | 0,126145 | Baixa   |
| Peri mirim            | 13803              | 0,001007 | 0,042641 | Baixa   |
| Pio XII               | 22016              | 0,001111 | 0,041577 | Baixa   |
|                       |                    | 0,001111 | 5,511577 | - Juinu |

#### **APENDICE 12:**

Tabela 152: Eficiência do Estado do PARÁ e DMU, ano 2010.

|             | Eficiência do Estado d | IO PARA E DIN | 10, ano 2010. |            |               |
|-------------|------------------------|---------------|---------------|------------|---------------|
| Unidade     |                        |               |               | Eficiência |               |
| Federada da |                        | População     | Eficiência    | por        |               |
| Amazônia    | DMU                    | - oF3         | Total Geral   | Tamanho da | Classificação |
| Legal (UF)  |                        |               | (eftg)        | População  |               |
|             |                        |               |               | (eftfp)    |               |
|             | Abaetetuba             | 141100        | 0,000159      | 1          | Alta          |
|             | Acara                  | 53569         | 0,0025        | 1          | Alta          |
|             | Afuá                   | 35042         | 0,000769      | 1          | Alta          |
|             | Alenquer               | 52626         | 0,000556      | 1          | Alta          |
|             | Almeirim               | 33614         | 0,000625      | 1          | Alta          |
|             | Bannach                | 3431          | 1             | 1          | Alta          |
|             | Belém                  | 1393399       | 9,03E-06      | 1          | Alta          |
|             | Braganca               | 113227        | 0,000213      | 1          | Alta          |
|             | Brejo grande do        | 7317          | 1             | 1          | Alta          |
|             | Araguaia               |               |               |            |               |
|             | Breves                 | 92860         | 0,000278      | 1          | Alta          |
|             | Canaã dos Carajás      | 26716         | 0,001737      | 1          | Alta          |
|             | Concordia do para      | 28216         | 0,00125       | 1          | Alta          |
|             | Juruti                 | 47086         | 0,002         | 1          | Alta          |
|             | Mocajuba               | 26731         | 0,000833      | 1          | Alta          |
|             | Ourilândia do norte    | 27359         | 0,000222      | 1          | Alta          |
|             | Pacajá                 | 39979         | 0,000233      | 1          | Alta          |
|             | Parauapebas            | 153908        | 6,85E-05      | 1          | Alta          |
| PA          | Santo Antônio do       | 133906        | 0,65E-05      | 1          | Alla          |
|             | Tauá                   | 26674         | 0,000667      | 1          | Alta          |
|             | São João de            | 20647         | 0.007004      | 1          | A 1.          |
|             | Pirabas                | 20647         | 0,007804      | 1          | Alta          |
|             | Trairão                | 16875         | 0,01          | 1          | Alta          |
|             | Tucuruí                | 97128         | 7,46E-05      | 1          | Alta          |
|             | Ulianópolis            | 43341         | 0,000323      | 1          | Alta          |
|             | Paragominas            | 97819         | 0,00008       | 0,987821   | Alta          |
|             | Cumaru do norte        | 10466         | 0,001429      | 0,905202   | Alta          |
|             | Baião                  | 36882         | 0,000769      | 0,879587   | Alta          |
|             | Primavera              | 10268         | 0,0025        | 0,859118   | Alta          |
|             | Moju                   | 70018         | 0,000213      | 0,829652   | Alta          |
|             | Santarém               | 294580        | 8,62E-05      | 0,821005   | Alta          |
|             | Abel Figueiredo        | 6780          | 0,001111      | 0,817477   | Alta          |
|             | São Geraldo do         | 25587         | 0,000303      | 0,808376   | A 1to         |
|             | Araguaia               | 23381         | 0,000303      | 0,808370   | Alta          |
|             | Maracanã               | 28376         | 0,001667      | 0,792465   | Alta          |
|             | Itaituba               | 97493         | 0,000108      | 0,760191   | Alta          |
|             | Vigia                  | 47889         | 0,000556      | 0,729286   | Média         |
|             | São João do            | 13155         | 0,000625      | 0,716974   | Média         |

| Araguaia          |        |          |          |         |
|-------------------|--------|----------|----------|---------|
| Oeiras do para    | 28595  | 0,006707 | 0,700758 | Média   |
| Tome-acu          | 56518  | 0,000196 | 0,680558 | Média   |
| Augusto Corrêa    | 40497  | 0,001111 | 0,669235 | Média   |
| Redenção          | 75556  | 0,000196 | 0,648003 | Média   |
| Novo              | 62050  | 0,0002   | 0,642472 | Média   |
| repartimento      | 02030  | 0,0002   | 0,042472 | Media   |
| Palestina do para | 7475   | 0,0025   | 0,633845 | Média   |
| Terra santa       | 16949  | 0,002    | 0,620388 | Média   |
| São Caetano de    | 16891  | 0,002    | 0,608572 | Média   |
| Odivelas          | 10091  | 0,002    | 0,006372 | Media   |
| Ananindeua        | 471980 | 9,34E-06 | 0,603632 | Média   |
| Castanhal         | 173149 | 6,62E-05 | 0,535204 | Média   |
| Igarapé-acu       | 35887  | 0,000769 | 0,514522 | Média   |
| Nova Timboteua    | 13670  | 0,0025   | 0,501573 | Média   |
| Marabá            | 233669 | 2,37E-05 | 0,492895 | Regular |
| Pau d'arco        | 6033   | 0,005    | 0,492558 | Regular |
| Dom Eliseu        | 51319  | 0,000278 | 0,420902 | Regular |
| Garrafão do norte | 25034  | 0,000833 | 0,338314 | Regular |
| Santarém novo     | 6141   | 0,01     | 0,322272 | Regular |
| Colares           | 11381  | 0,005    | 0,310751 | Regular |
| Nova Esperança    | 20158  | 0,001429 | 0,280804 | Regular |
| do Piriá          | 20136  | 0,001429 | 0,280804 | Regulai |
| Limoeiro do       | 25021  | 0,01     | 0,274899 | Regular |
| Ajuru             | 23021  | 0,01     | 0,274077 | Regulai |
| Santa cruz do     | 8155   | 0,01     | 0,268285 | Regular |
| Arari             | 0133   | 0,01     | 0,200203 | •       |
| Mae do rio        | 27904  | 0,000588 | 0,19838  | Baixa   |
| São Francisco do  | 15060  | 0,001111 | 0,197752 | Baixa   |
| para              | 15000  | 0,001111 | 0,171132 | Daixa   |

### **APENDICE 13:**

Tabela 153: Eficiência do Estado de TOCANTINS e DMU, ano 2010.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                         | População | Eficiência<br>Total Geral<br>(eftg) | Eficiência<br>por<br>Tamanho da<br>População | Classificação |
|--------------------------------------------------|-----------------------------|-----------|-------------------------------------|----------------------------------------------|---------------|
|                                                  | Aguiarnopolis               | 5162      | 1                                   | ( <i>eftfp</i> )                             | Alta          |
|                                                  | Aurora do                   | 3446      | 1                                   | 1                                            | Alta          |
| ТО                                               | Tocantins<br>Barra do ouro  | 4123      | 1                                   | 1                                            | Alta          |
| 10                                               | Carmolandia                 | 2316      | 1                                   | 1                                            | Alta          |
|                                                  | Chapada de areia            | 1335      | 1                                   | 1                                            | Alta          |
|                                                  | Dois irmãos do<br>Tocantins | 7161      | 0,029694                            | 1                                            | Alta          |
|                                                  | Duere                       | 4592      | 0,004085                            | 1                                            | Alta          |

| Ipueiras          | 1639   | 1        | 1        | Alta               |
|-------------------|--------|----------|----------|--------------------|
| Itaguatins        | 6029   | 1        | 1        | Alta               |
| Juarina           | 2231   | 0,054338 | 1        | Alta               |
| Lizarda           | 3725   | 1        | 1        | Alta               |
| Luzinópolis       | 2622   | 0,021163 | 1        | Alta               |
| Natividade        | 9000   | 1        | 1        | Alta               |
| Novo jardim       | 2457   | 1        | 1        | Alta               |
| Oliveira de       | 1037   | 1        | 1        | Alta               |
| Fátima            | 1037   | 1        | 1        | Alla               |
| Pedro Afonso      | 11539  | 0,00125  | 1        | Alta               |
| Ponte alta do bom | 4544   | 0.02196  | 1        | Alta               |
| Jesus             | 4344   | 0,02186  | 1        | Alla               |
| Porto alegre do   | 2706   | 0.010720 | 1        | Alta               |
| Tocantins         | 2796   | 0,010739 | 1        | Alla               |
| Porto nacional    | 49146  | 0,00013  | 1        | Alta               |
| Riachinho         | 4191   | 1        | 1        | Alta               |
| Rio dos bois      | 2570   | 0,008821 | 1        | Alta               |
| Rio sono          | 6254   | 0,166291 | 1        | Alta               |
| Sampaio           | 3864   | 0,007382 | 1        | Alta               |
| Taipas do         | 1045   | . 1      | 1        | A 1.               |
| Tocantins         | 1945   | 1        | 1        | Alta               |
| Talismã           | 2562   | 0,004513 | 1        | Alta               |
| Xambioá           | 11484  | 0,017813 | 1        | Alta               |
| Palmas            | 228332 | 0,00004  | 0,905683 | Alta               |
| Peixe             | 10384  | 0,001268 | 0,872215 | Alta               |
| Colinas do        | 20020  |          |          | A 1.               |
| Tocantins         | 30838  | 0,001227 | 0,776165 | Alta               |
| Aliança do        | 5.671  | 0.007127 | 0.767140 | A 1.               |
| Tocantins         | 5671   | 0,007127 | 0,767143 | Alta               |
| Carrasco bonito   | 3688   | 1        | 0,763099 | Alta               |
| Marilândia do     | 2154   | 0.01     |          | 3.67.11            |
| Tocantins         | 3154   | 0,01     | 0,745895 | Média              |
| Presidente        | 2601   | 0.002462 | 0.742122 | 3.67.11            |
| Kennedy           | 3681   | 0,002462 | 0,743122 | Média              |
| Centenário        | 2566   | 0,003333 | 0,729079 | Média              |
| Ananás            | 9865   | 0,00125  | 0,710922 | Média              |
| Divinópolis do    | (2.62  | 0.021204 | ,        | 3.67.11            |
| Tocantins         | 6363   | 0,021304 | 0,683504 | Média              |
| Sitio novo do     | 0140   | 0.002    | 0.601510 | 3.67.11            |
| Tocantins         | 9148   | 0,002    | 0,681513 | Média              |
| Itapiratins       | 3532   | 0,0304   | 0,673397 | Média              |
| Santa Tereza do   | 2522   | 0.005505 | 0.646000 | 3.47.11            |
| Tocantins         | 2523   | 0,005585 | 0,646208 | Média              |
| Augustinópolis    | 15950  | 0,000579 | 0,638473 | Média              |
| São Miguel do     | 10401  | 0.01     | 0.60006  | M//1!-             |
| Tocantins         | 10481  | 0,01     | 0,60006  | Média              |
| Axixá do          | 0275   | 0.002077 | 0.505601 | <b>N A</b> & A ! - |
| Tocantins         | 9275   | 0,003977 | 0,585681 | Média              |
| Filadélfia        | 8505   | 0,001128 | 0,572598 | Média              |
| Praia norte       | 7659   | 0,011195 | 0,556757 | Média              |
|                   |        |          |          |                    |

| Esperantina                   | 9476  | 0,011833 | 0,531506 | Média   |
|-------------------------------|-------|----------|----------|---------|
| Arapoema                      | 6742  | 0,0025   | 0,528222 | Média   |
| Santa Terezinha do Tocantins  | 2474  | 0,011748 | 0,521353 | Média   |
| Babaçulândia                  | 10424 | 0,001667 | 0,513787 | Média   |
| Araguatins                    | 31329 | 0,000792 | 0,511442 | Média   |
| Novo acordo                   | 3762  | 0,0025   | 0,509534 | Média   |
| Combinado                     | 4669  | 0,011173 | 0,505269 | Média   |
| São bento do<br>Tocantins     | 4608  | 0,009209 | 0,489345 | Regular |
| Mateiros                      | 2223  | 0,003333 | 0,477919 | Regular |
| Palmeirante                   | 4954  | 0,017703 | 0,45406  | Regular |
| Recursolândia                 | 3768  | 0,011705 | 0,450235 | Regular |
| Santa Maria do<br>Tocantins   | 2894  | 0,010769 | 0,445315 | Regular |
| Araguaçu                      | 8786  | 0,002517 | 0,404573 | Regular |
| Marianópolis do<br>Tocantins  | 4352  | 0,005    | 0,396921 | Regular |
| Pium                          | 6694  | 0,010388 | 0,386679 | Regular |
| Buriti do<br>Tocantins        | 9768  | 0,012702 | 0,373931 | Regular |
| Araguanã                      | 5030  | 0,00708  | 0,371152 | Regular |
| São Sebastiao do<br>Tocantins | 4283  | 0,003333 | 0,346863 | Regular |
| Lajeado                       | 2773  | 0,005    | 0,326045 | Regular |
| Bandeirantes do Tocantins     | 3122  | 0,014521 | 0,323543 | Regular |
| Tocantinia                    | 6736  | 0,004986 | 0,317326 | Regular |
| Monte do Carmo                | 6716  | 0,010022 | 0,234163 | Baixa   |
| Santa fé do<br>Araguaia       | 6599  | 0,003333 | 0,227594 | Baixa   |
| Bernardo Sayao                | 4456  | 0,002    | 0,199368 | Baixa   |
| Campos lindos                 | 8139  | 0,001667 | 0,196427 | Baixa   |
| Bom jesus do<br>Tocantins     | 3768  | 0,003333 | 0,190255 | Baixa   |
| Nova Rosalandia               | 3770  | 0,003333 | 0,170293 | Baixa   |
| Goiatins                      | 12064 | 0,00125  | 0,119446 | Baixa   |
| Jau do Tocantins              | 3507  | 0,005    | 0,106784 | Baixa   |
| Lagoa da<br>confusão          | 10210 | 0,003333 | 0,080515 | Baixa   |
| Pau d'arco                    | 4588  | 0,0025   | 0,063941 | Baixa   |
| Aragominas                    | 5882  | 0,004663 | 0,038355 | Baixa   |
|                               |       | ,        | ,        |         |

#### **APENDICE J1:**

Tabela 154: Eficiência do Estado do MARANHÃO e DMU, ano 2011.

| Unidade     | DMU | População | Eficiência  | Eficiência | Classificação |
|-------------|-----|-----------|-------------|------------|---------------|
| Federada da | DMU |           | Total Geral | por        | Ciassificação |

| Amazônia<br>Legal (UF) |                             |         | (eftg)   | Tamanho da<br>População<br>( <i>eftfp</i> ) |       |
|------------------------|-----------------------------|---------|----------|---------------------------------------------|-------|
|                        | Anajatuba                   | 25628   | 0,00285  | 1                                           | Alta  |
|                        | Arari                       | 28651   | 0,000526 | 1                                           | Alta  |
|                        | Bacabeira                   | 15263   | 0,000588 | 1                                           | Alta  |
|                        | Cajari                      | 18472   | 0,01     | 1                                           | Alta  |
|                        | Centro novo do<br>Maranhão  | 17949   | 0,003333 | 1                                           | Alta  |
|                        | Codó                        | 118567  | 0,000204 | 1                                           | Alta  |
|                        | Esperantinópolis            | 18239   | 0,005    | 1                                           | Alta  |
|                        | Itaipava do Grajaú          | 14571   | 0,00125  | 1                                           | Alta  |
|                        | Itapecuru mirim             | 63023   | 0,000345 | 1                                           | Alta  |
|                        | Maracaçumé                  | 19484   | 0,001    | 1                                           | Alta  |
|                        | Palmeirândia                | 18879   | 0,002    | 1                                           | Alta  |
|                        | Paraibano                   | 20276   | 0,001429 | 1                                           | Alta  |
|                        | Pinheiro                    | 78875   | 0,000141 | 1                                           | Alta  |
|                        | Raposa                      | 27036   | 0,000435 | 1                                           | Alta  |
|                        | Santa Luzia                 | 74500   | 0,000673 | 1                                           | Alta  |
|                        | São Bento                   | 41420   | 0,0005   | 1                                           | Alta  |
|                        | São João do Soter           | 17423   | 0,0025   | 1                                           | Alta  |
|                        | São Luís                    | 1027429 | 8,87E-06 | 1                                           | Alta  |
|                        | Satubinha                   | 12300   | 1        | 1                                           | Alta  |
|                        | Senador la Rocque           | 14549   | 0,020901 | 1                                           | Alta  |
|                        | Trizidela do vale           | 19149   | 0,003063 | 1                                           | Alta  |
| MA                     | Turiaçu                     | 34136   | 1        | 1                                           | Alta  |
|                        | Vargem grande               | 50541   | 0,000323 | 1                                           | Alta  |
|                        | Imperatriz                  | 248805  | 2,73E-05 | 0,984189                                    | Alta  |
|                        | Açailândia                  | 105254  | 0,000141 | 0,976976                                    | Alta  |
|                        | Lago da pedra               | 46701   | 0,0004   | 0,961783                                    | Alta  |
|                        | Coroatá                     | 62189   | 0,00125  | 0,896797                                    | Alta  |
|                        | São Pedro da agua<br>branca | 12113   | 0,003934 | 0,895206                                    | Alta  |
|                        | Joao Lisboa                 | 23641   | 0,000833 | 0,885921                                    | Alta  |
|                        | Balsas                      | 85321   | 0,000167 | 0,840661                                    | Alta  |
|                        | Viana                       | 49883   | 0,000357 | 0,835929                                    | Alta  |
|                        | Buriticupu                  | 66325   | 0,000276 | 0,830171                                    | Alta  |
|                        | Alto alegre do<br>Pindaré   | 31125   | 0,001544 | 0,759833                                    | Alta  |
|                        | Estreito                    | 36826   | 0,000489 | 0,755192                                    | Alta  |
|                        | Turilândia                  | 23277   | 0,00125  | 0,743165                                    | Média |
|                        | Santo Antônio dos<br>Lopes  | 14291   | 0,003333 | 0,730033                                    | Média |
|                        | São Mateus do<br>Maranhão   | 39418   | 0,0004   | 0,719244                                    | Média |
|                        | Paulo ramos                 | 20140   | 0,001429 | 0,68196                                     | Média |
|                        | Santa Inês                  | 78020   | 0,000204 | 0,672998                                    | Média |
|                        | Bacabal                     | 100614  | 0,000145 | 0,67185                                     | Média |
|                        | Rosário                     | 40030   | 0,0005   | 0,632765                                    | Média |

| Monção                    | 32157  | 0,0025   | 0,575352 | Média   |
|---------------------------|--------|----------|----------|---------|
| Santa Luzia do<br>Paruá   | 22842  | 0,001111 | 0,544846 | Média   |
| Governador<br>Archer      | 10290  | 0,005    | 0,538413 | Média   |
| Buriti bravo              | 23011  | 0,001111 | 0,525405 | Média   |
| Arame                     | 31834  | 0,000994 | 0,511413 | Média   |
| Apicum-acu                | 15255  | 0,0025   | 0,481691 | Regular |
| Nova Iorque               | 4594   | 0,01     | 0,364408 | Regular |
| Peri mirim                | 13859  | 0,003333 | 0,316676 | Regular |
| Paco do lumiar            | 107764 | 0,000263 | 0,286183 | Regular |
| Alto Parnaíba             | 10811  | 0,0025   | 0,243173 | Baixa   |
| Cantanhede                | 20667  | 0,001667 | 0,221972 | Baixa   |
| Bequimão                  | 20393  | 0,005    | 0,194382 | Baixa   |
| Boa vista do<br>Gurupi    | 8166   | 0,0025   | 0,126068 | Baixa   |
| Pio XII                   | 21859  | 0,001111 | 0,111396 | Baixa   |
| Sambaíba                  | 5504   | 1        | 0,087984 | Baixa   |
| Feira nova do<br>Maranhão | 8171   | 1        | 0,082109 | Baixa   |
| Itinga do<br>Maranhão     | 24996  | 0,000667 | 0,075665 | Baixa   |

## **APENDICE J2:**

Tabela 155: Eficiência do Estado do PARÁ e DMU, ano 2011.

| Unidade     |                             |           | EC: '^ '    | Eficiência |               |
|-------------|-----------------------------|-----------|-------------|------------|---------------|
| Federada da | DMII                        | População | Eficiência  | por        | C1 'C' ~      |
| Amazônia    | DMU                         | 1 3       | Total Geral | Tamanho da | Classificação |
| Legal (UF)  |                             |           | (eftg)      | População  |               |
|             |                             |           |             | (eftfp)    | A 1.          |
|             | Abaetetuba                  | 142785    | 0,00013     | 1          | Alta          |
|             | Acara                       | 53680     | 0,000769    | 1          | Alta          |
|             | Afuá                        | 35467     | 0,000588    | 1          | Alta          |
|             | Alenquer                    | 53004     | 0,000556    | 1          | Alta          |
|             | Almeirim                    | 33588     | 0,000588    | 1          | Alta          |
|             | Baião                       | 38092     | 0,000625    | 1          | Alta          |
|             | Belém                       | 1402056   | 1,04E-05    | 1          | Alta          |
| PA          | Brejo grande do<br>Araguaia | 7306      | 0,001667    | 1          | Alta          |
|             | Canaã dos Carajás           | 27928     | 0,000286    | 1          | Alta          |
|             | Garrafão do norte           | 25096     | 0,002       | 1          | Alta          |
|             | Juruti                      | 48306     | 0,0025      | 1          | Alta          |
|             | Mocajuba                    | 27206     | 0,005       | 1          | Alta          |
|             | Ourilândia do norte         | 27964     | 0,000435    | 1          | Alta          |
|             | Pacajá                      | 40830     | 0,000244    | 1          | Alta          |
|             | Paragominas                 | 99459     | 0,000114    | 1          | Alta          |

| D 1                          | 1 < 0.220                   | 5.01E.05        | 1        | A 1.         |
|------------------------------|-----------------------------|-----------------|----------|--------------|
| Parauapebas                  | 160228                      | 5,81E-05        | 1        | Alta         |
| Primavera                    | 10310                       | 0,0025          | 1        | Alta         |
| Santa Maria das              | 17686                       | 0,000714        | 1        | Alta         |
| Barreiras                    |                             | ,               |          |              |
| Santarém<br>Santo Antônio do | 297039                      | 6,37E-05        | 1        | Alta         |
| Tauá                         | 27199                       | 0,001111        | 1        | Alta         |
| São Caetano de               |                             |                 |          |              |
| Odivelas                     | 16990                       | 0,01            | 1        | Alta         |
| São João do                  |                             |                 |          |              |
| Araguaia                     | 13225                       | 0,013998        | 1        | Alta         |
| Terra santa                  | 17130                       | 0,01            | 1        | Alta         |
| Trairão                      | 17130                       | 0,01            | 1        | Alta         |
| Tucuruí                      | 98919                       | 7,94E-05        | 1        | Alta         |
| Ulianópolis                  | 45190                       | 0,000357        | 1        | Alta         |
| Palestina do para            | 7470                        | 0,005           | 0,985665 | Alta         |
| Cumaru do norte              | 10810                       | 0,003           | 0,964017 | Alta         |
|                              | 71329                       | 0,001667        | 0,954811 | Alta         |
| Moju<br>São Geraldo do       | /1329                       | 0,000104        | 0,934611 | Alla         |
| Araguaia                     | 25429                       | 0,000526        | 0,929593 | Alta         |
| Anaguaia<br>Ananindeua       | 477999                      | 1,08E-05        | 0,920621 | Alta         |
| Tome-acu                     | 57228                       | 0,00027         | 0,895971 | Alta         |
| Pau d'arco                   | 57228<br>5949               | 0,00027         | *        | Alta         |
| Nova Timboteua               | 3949<br>13844               | 0,004183        | 0,88392  |              |
|                              | 138 <del>44</del><br>114720 | 0,0023          | 0,87629  | Alta<br>Alta |
| Braganca                     |                             | ,               | 0,875431 |              |
| Concordia do para            | 28773                       | 0,000588        | 0,872397 | Alta         |
| Maracanã                     | 28438                       | 0,005           | 0,851977 | Alta         |
| Redenção                     | 76500                       | 0,000113        | 0,849578 | Alta         |
| São João de                  | 20890                       | 0,001           | 0,785615 | Alta         |
| Pirabas                      |                             |                 |          | A 14 -       |
| Novo                         | 63603                       | 0,000244        | 0,769273 | Alta         |
| repartimento                 | 41072                       | 0.001420        | 0.749940 | Média        |
| Augusto Corrêa<br>Mae do rio |                             | 0,001429        | 0,748849 |              |
|                              | 28100                       | 0,000625        | 0,719124 | Média        |
| Vigia                        | 48481                       | 0,000455        | 0,628571 | Média        |
| Dom Eliseu                   | 52224                       | 0,000233        | 0,581561 | Média        |
| São Francisco do<br>Para     | 15123                       | 0,001111        | 0,551754 | Média        |
| Marabá                       | 238708                      | 2,3E-05         | 0,522192 | Média        |
| Igarapé-acu                  | 36155                       | 0,000769        | 0,506072 | Média        |
| Santa cruz do                | 30133                       | 0,000707        | 0,300072 | Mcdia        |
| Arari                        | 8378                        | 0,005126        | 0,46151  | Regular      |
| Nova Esperança               |                             |                 |          |              |
| do Piriá                     | 20255                       | 0,000714        | 0,454031 | Regular      |
| Limoeiro do                  |                             |                 |          |              |
|                              | 25440                       | 0,01            | 0,361964 | Regular      |
| Ajuru<br>Santaném nava       | 6105                        | 0.01            | 0.244226 | Daire        |
| Santarém novo                | 6195<br>6843                | 0,01<br>0,00125 | 0,244226 | Baixa        |
| Abel Figueiredo<br>Peixe-boi | 6843<br>7861                | 0,00125         | 0,177508 | Baixa        |
|                              |                             | ,               | 0,162947 | Baixa        |
| Melgaço                      | 25095                       | 0,01            | 0,128237 | Baixa        |

#### **APENDICE J3:**

Tabela 156: Eficiência do Estado de TOCANTINS e DMU, ano 2011

|                                                  | Eficiência do Estado o       | ic rochivin | vo c Divio, and                              |                                              |              |
|--------------------------------------------------|------------------------------|-------------|----------------------------------------------|----------------------------------------------|--------------|
| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                          | População   | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por<br>Tamanho da<br>População | Classificaçã |
|                                                  |                              |             |                                              | (eftfp)                                      | Alta         |
|                                                  | Aguiarnopolis                | 5317        | 0,008411                                     | 1                                            | Alta         |
|                                                  | Araguaçu                     | 8743        | 0,003659                                     | 1                                            | Alta         |
|                                                  | Carmolandia                  | 2340        | 1                                            | 1                                            | Alta         |
|                                                  | Chapada de areia             | 1340        | 1                                            | 1                                            | Alta         |
|                                                  | Dois irmãos do Tocantins     | 7153        | 1                                            | 1                                            | Alta         |
|                                                  | Filadélfia                   | 8527        | 1                                            | 1                                            | Alta         |
|                                                  | Ipueiras                     | 1675        | 1                                            | 1                                            | Alta         |
|                                                  | Itaguatins                   | 6002        | 0,01859                                      | 1                                            | Alta         |
|                                                  | Juarina                      | 2223        | 0,01                                         | 1                                            | Alta         |
|                                                  | Lajeado                      | 2806        | 0,003333                                     | 1                                            | Alta         |
|                                                  | Lizarda                      | 3720        | 1                                            | 1                                            | Alta         |
|                                                  | Luzinópolis                  | 2668        | 1                                            | 1                                            | Alta         |
|                                                  | Oliveira de<br>Fatima        | 1043        | 1                                            | 1                                            | Alta         |
|                                                  | Pedro Afonso                 | 11732       | 0,002                                        | 1                                            | Alta         |
|                                                  | Porto alegre do Tocantins    | 2827        | 1                                            | 1                                            | Alta         |
| TO                                               | Praia norte                  | 7726        | 1                                            | 1                                            | Alta         |
| 10                                               | Presidente<br>Kennedy        | 3675        | 0,006788                                     | 1                                            | Alta         |
|                                                  | Rio sono                     | 6267        | 1                                            | 1                                            | Alta         |
|                                                  | Sampaio                      | 3946        | 0,01                                         | 1                                            | Alta         |
|                                                  | Santa Maria do<br>Tocantins  | 2945        | 0,005653                                     | 1                                            | Alta         |
|                                                  | Santa Terezinha do Tocantins | 2475        | 1                                            | 1                                            | Alta         |
|                                                  | São Bento do<br>Tocantins    | 4675        | 1                                            | 1                                            | Alta         |
| Taipas do<br>Tocantins                           | -                            | 1963        | 0,005                                        | 1                                            | Alta         |
|                                                  | Peixe                        | 10508       | 0,003022                                     | 0,957287                                     | Alta         |
|                                                  | Augustinópolis               | 16179       | 0,000345                                     | 0,943129                                     | Alta         |
|                                                  | Duere                        | 4594        | 0,000833                                     | 0,940755                                     | Alta         |
|                                                  | Natividade                   | 9010        | 0,030914                                     | 0,8397                                       | Alta         |
|                                                  | Ponte alta do bom<br>Jesus   | 4542        | 0,040307                                     | 0,806682                                     | Alta         |
|                                                  | Lagoa da confusão            | 10520       | 0,002                                        | 0,79556                                      | Alta         |

| Novo jardim      | 2480         | 0,003333 | 0,75679   | Alta     |
|------------------|--------------|----------|-----------|----------|
| Porto nacional   | 49465        | 0,000143 | 0,754352  | Alta     |
| Carrasco bonito  | 3724         | 0,002714 | 0,732104  | Média    |
| Talismã          | 2582         | 0,016683 | 0,722064  | Média    |
| Novo acordo      | 3816         | 1        | 0,719468  | Média    |
| Palmas           | 235315       | 3,94E-05 | 0,66901   | Média    |
| Colinas do       | 21262        | 0.000212 | 0.652652  | Mádia    |
| Tocantins        | 31263        | 0,000313 | 0,652653  | Média    |
| Barra do ouro    | 4165         | 0,005512 | 0,650739  | Média    |
| Babaçulândia     | 10431        | 0,001667 | 0,637615  | Média    |
| Axixá do         | 9309         | 0,002    | 0,609485  | Média    |
| Tocantins        | 9309         | 0,002    | 0,009463  | Media    |
| Recursolândia    | 3816         | 0,007487 | 0,593371  | Média    |
| Buriti do        | 9916         | 0,033468 | 0,573722  | Média    |
| Tocantins        | <i>)</i> )10 | 0,033400 | 0,373722  | Mcdia    |
| Marianópolis do  | 4430         | 0,050314 | 0,526821  | Média    |
| Tocantins        |              | ,        | 0,320021  | Mcdia    |
| Darcinópolis     | 5350         | 0,003274 | 0,502069  | Média    |
| Marilândia do    | 3177         | 1        | 0,501882  | Média    |
| Tocantins        |              | -        | ,         |          |
| Esperantina      | 9618         | 0,002    | 0,485266  | Regular  |
| Divinópolis do   | 6408         | 0,003308 | 0,472768  | Regular  |
| Tocantins        |              |          |           |          |
| Araguatins       | 31737        | 0,000476 | 0,471177  | Regular  |
| Sitio novo do    | 9122         | 0,010634 | 0,453743  | Regular  |
| Tocantins        |              |          |           |          |
| Riachinho        | 4231         | 1        | 0,385805  | Regular  |
| Campos lindos    | 8331         | 0,005    | 0,360712  | Regular  |
| Santa Tereza do  | 2554         | 1        | 0,34609   | Regular  |
| Tocantins        |              |          | 3,2 13 33 |          |
| Bom jesus do     | 3879         | 0,002    | 0,339312  | Regular  |
| Tocantins        |              | ,        | ,         | <b>.</b> |
| Mateiros         | 2267         | 0,003333 | 0,336575  | Regular  |
| Monte do Carmo   | 6833         | 0,002    | 0,331027  | Regular  |
| Pium             | 6783         | 0,033536 | 0,329951  | Regular  |
| Arapoema         | 6720         | 0,0025   | 0,325317  | Regular  |
| Nova Rosalandia  | 3815         | 0,003333 | 0,260577  | Regular  |
| Bandeirantes do  | 3161         | 0,007607 | 0,259199  | Regular  |
| Tocantins        | 5057         | 0.011041 | 0.220000  | ъ.       |
| Palmeirante      | 5057         | 0,011241 | 0,239888  | Baixa    |
| São Sebastião do | 4330         | 0,003333 | 0,205236  | Baixa    |
| Tocantins        | 2527         |          |           | ъ.       |
| Jau do Tocantins | 3537         | 1        | 0,203157  | Baixa    |
| Bernardo Sayao   | 4449         | 0,001429 | 0,193452  | Baixa    |
| Aragominas       | 5859         | 0,0025   | 0,190219  | Baixa    |
| Araguanã         | 5094         | 0,021338 | 0,186865  | Baixa    |
| Goiatins         | 12143        | 0,0025   | 0,180064  | Baixa    |
| Pau d'arco       | 4607         | 0,0025   | 0,154908  | Baixa    |
| Ananás           | 9815         | 0,012378 | 0,128316  | Baixa    |
| São Miguel do    | 10634        | 0,002    | 0,123413  | Baixa    |
|                  |              |          |           |          |

| Tocantins               |       |          |          |       |  |
|-------------------------|-------|----------|----------|-------|--|
| Xambioá                 | 11470 | 0,005798 | 0,116456 | Baixa |  |
| Tocantinia              | 6809  | 0,014149 | 0,019753 | Baixa |  |
| Santa fé do<br>Araguaia | 6683  | 0,002    | 0,019684 | Baixa |  |

### **APENDICE L1:**

Tabela 157: Eficiência do Estado do MARANHÃO e DMU, ano 2012.

| Unidade     | Eficiência do Estado c     |            |             | Eficiência Eficiência |               |
|-------------|----------------------------|------------|-------------|-----------------------|---------------|
| Federada da |                            | População  | Eficiência  | por                   |               |
| Amazônia    | DMU                        | 1 opulação | Total Geral | Tamanho da            | Classificação |
| Legal (UF)  |                            |            | (eftg)      | População             |               |
|             |                            |            |             | (eftfp)               |               |
|             | Açailândia                 | 106422     | 9,71E-05    | 1                     | Alta          |
|             | Anajatuba                  | 25955      | 0,001429    | 1                     | Alta          |
|             | Arari                      | 28809      | 0,000588    | 1                     | Alta          |
|             | Bacabeira                  | 15591      | 0,000556    | 1                     | Alta          |
|             | Balsas                     | 87057      | 0,000189    | 1                     | Alta          |
|             | Bequimão                   | 20773      | 0,005       | 1                     | Alta          |
|             | Boa vista do<br>Gurupi     | 8375       | 1           | 1                     | Alta          |
|             | Buriti bravo               | 23119      | 0,00125     | 1                     | Alta          |
|             | Cajari                     | 18603      | 0,01        | 1                     | Alta          |
|             | Cantanhede                 | 20879      | 0,000909    | 1                     | Alta          |
|             | Centro novo do             | 19947      | 0,0025      | 1                     | Alta          |
|             | Maranhão                   | 19947      | 0,0023      | 1                     | Alla          |
|             | Itinga do                  | 25125      | 0,0005      | 1                     | Alta          |
|             | Maranhão                   |            | ,           | 1                     |               |
|             | Joao Lisboa                | 23561      | 0,000625    | 1                     | Alta          |
| MA          | Lago da pedra              | 47298      | 0,000357    | 1                     | Alta          |
|             | Maracaçumé                 | 19887      | 0,001667    | 1                     | Alta          |
|             | Nova Iorque                | 4598       | 1           | 1                     | Alta          |
|             | Raposa                     | 27723      | 0,0005      | 1                     | Alta          |
|             | Santa Luzia                | 74943      | 0,000213    | 1                     | Alta          |
|             | Santa Luzia do<br>Paruá    | 23035      | 0,000695    | 1                     | Alta          |
|             | Santo Antônio dos<br>Lopes | 14294      | 0,001667    | 1                     | Alta          |
|             | São João do Soter          | 17602      | 0,01        | 1                     | Alta          |
|             | São Luís                   | 1039610    | 8,04E-06    | 1                     | Alta          |
|             | Satubinha                  | 12600      | 1           | 1                     | Alta          |
|             | Turilândia                 | 23694      | 0,001111    | 1                     | Alta          |
|             | Vargem grande              | 51633      | 0,000667    | 1                     | Alta          |
|             | Codó                       | 119079     | 0,000204    | 0,941802              | Alta          |
|             | São Bento                  | 42083      | 0,000714    | 0,923947              | Alta          |
|             | Pinheiro                   | 79566      | 0,000145    | 0,912112              | Alta          |
|             | Coroatá                    | 62639      | 0,000313    | 0,905415              | Alta          |

| Viana                     | 50257  | 0,000323 | 0,883499 | Alta    |
|---------------------------|--------|----------|----------|---------|
| Senador la Rocque         | 14447  | 1        | 0,842487 | Alta    |
| Itapecuru mirim           | 63907  | 0,000385 | 0,841652 | Alta    |
| Alto alegre do<br>Pindaré | 31190  | 0,0005   | 0,820657 | Alta    |
| Buriticupu                | 67378  | 0,0002   | 0,811181 | Alta    |
| Santa Inês                | 78733  | 0,000204 | 0,777078 | Alta    |
| Paulo ramos               | 20454  | 0,001667 | 0,752669 | Alta    |
| Monção                    | 31717  | 0,000833 | 0,751426 | Alta    |
| Imperatriz                | 250063 | 2,25E-05 | 0,745895 | Média   |
| Itaipava do Grajaú        | 13103  | 0,002    | 0,729657 | Média   |
| Estreito                  | 37784  | 0,000625 | 0,729272 | Média   |
| São Mateus do<br>Maranhão | 39733  | 0,000476 | 0,699306 | Média   |
| Governador                |        |          |          |         |
| Archer                    | 10372  | 0,002    | 0,682323 | Média   |
| Rosário                   | 40469  | 0,000435 | 0,619146 | Média   |
| Arame                     | 31729  | 0,001972 | 0,583695 | Média   |
| Vitorino freire           | 31709  | 0,000476 | 0,575791 | Média   |
| Bacabal                   | 101195 | 0,000147 | 0,56904  | Média   |
| Palmeirândia              | 19007  | 0,00125  | 0,546822 | Média   |
| Apicum-acu                | 15542  | 0,002    | 0,492632 | Regular |
| Alto Parnaíba             | 10856  | 0,001667 | 0,488031 | Regular |
| Peri mirim                | 13898  | 0,002    | 0,450458 | Regular |
| Paco do lumiar            | 110321 | 0,000222 | 0,350335 | Regular |
| Pio XII                   | 21708  | 0,000833 | 0,280179 | Regular |
| Sambaíba                  | 5522   | 0,0025   | 0,112688 | Baixa   |
| Cedral                    | 10374  | 0,005    | 0,101702 | Baixa   |
| Feira nova do<br>Maranhão | 8215   | 0,007077 | 0,080121 | Baixa   |

### **APENDICE L2:**

Tabela 158: Eficiência do Estado do PARÁ e DMU, ano 2012.

| Unidade                               | Effectività do Estado e |           |                                              | Eficiência                       |               |
|---------------------------------------|-------------------------|-----------|----------------------------------------------|----------------------------------|---------------|
| Federada da<br>Amazônia<br>Legal (UF) | DMU                     | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | por Tamanho da População (eftfp) | Classificação |
|                                       | Acara                   | 53787     | 0,000333                                     | 1                                | Alta          |
|                                       | Afuá                    | 35879     | 0,000714                                     | 1                                | Alta          |
|                                       | Almeirim                | 33563     | 0,000417                                     | 1                                | Alta          |
| PA                                    | Belém                   | 1410430   | 9,54E-06                                     | 1                                | Alta          |
| PA                                    | Concordia do para       | 29313     | 0,000556                                     | 1                                | Alta          |
|                                       | Cumaru do norte         | 11144     | 1                                            | 1                                | Alta          |
|                                       | Juruti                  | 49486     | 0,005                                        | 1                                | Alta          |
|                                       | Melgaço                 | 25374     | 0,01                                         | 1                                | Alta          |
|                                       | Mocajuba                | 27666     | 0,005                                        | 1                                | Alta          |

| Moju                    | 72597   | 0,000217  | 1        | Alta           |
|-------------------------|---------|-----------|----------|----------------|
| Novo                    | 65106   | 0,001245  | 1        | Alta           |
| repartimento            | 03100   | 0,001213  | 1        | 7 1114         |
| Ourilândia do           | 28551   | 0,000357  | 1        | Alta           |
| norte                   | 41.65.4 | ,         | 1        | A 1.           |
| Pacajá<br>Pau d'arco    | 41654   | 0,000196  | 1<br>1   | Alta<br>Alta   |
| Santa cruz do           | 5869    | 0,005     | 1        | Alla           |
| Arari                   | 8593    | 1         | 1        | Alta           |
| Santa Maria das         |         |           |          |                |
| barreiras               | 18150   | 0,000526  | 1        | Alta           |
| Santarém                | 299419  | 5,95E-05  | 1        | Alta           |
| Santo Antônio do        |         | ,         |          |                |
| Tauá                    | 27707   | 0,000714  | 1        | Alta           |
| São Caetano de          | 17007   | 0.001.420 | 1        | A 1.           |
| Odivelas                | 17087   | 0,001429  | 1        | Alta           |
| São João de             | 21125   | 0,000833  | 1        | Alta           |
| Pirabas                 | 21123   | 0,000655  | 1        | Alla           |
| Terra santa             | 17305   | 0,003333  | 1        | Alta           |
| Tucuruí                 | 100651  | 0,000101  | 1        | Alta           |
| Tome-acu                | 57914   | 0,000159  | 0,980624 | Alta           |
| Brejo grande do         | 7295    | 0,001525  | 0,974978 | Alta           |
| Araguaia                |         | •         | •        |                |
| Parauapebas             | 166342  | 4,22E-05  | 0,94519  | Alta           |
| Trairão                 | 17303   | 0,01      | 0,944429 | Alta           |
| Baião                   | 39263   | 0,000909  | 0,927304 | Alta           |
| Augusto Correa          | 41628   | 0,001667  | 0,920753 | Alta           |
| Primavera               | 10352   | 0,0025    | 0,887351 | Alta           |
| Alenquer                | 53369   | 0,000435  | 0,870335 | Alta           |
| Ulianópolis             | 46979   | 0,000313  | 0,855286 | Alta           |
| Palestina do para       | 7465    | 0,001111  | 0,850226 | Alta           |
| Redenção                | 77415   | 7,63E-05  | 0,82515  | Alta           |
| Ananindeua              | 483821  | 9,98E-06  | 0,812475 | Alta           |
| Dom Eliseu              | 53100   | 0,000244  | 0,785165 | Alta           |
| Maracanã                | 28498   | 0,002     | 0,762088 | Alta           |
| Nova Timboteua          | 14012   | 0,00125   | 0,758605 | Alta           |
| Marabá                  | 243583  | 2,38E-05  | 0,74445  | Média          |
| Mae do rio              | 28290   | 0,000667  | 0,742347 | Média<br>Média |
| Conceição do            | 45885   | 1         | 0,651888 | Média          |
| Araguaia<br>Paragominas | 101046  | 0,000103  | 0,629552 | Média          |
| Vigia                   | 49054   | 0,000103  | 0,573906 | Média          |
| Braganca                | 116164  | 0,000333  | 0,566994 | Média          |
| Igarapé-acu             | 36414   | 0,000130  | 0,485537 | Regular        |
| Garrafão do norte       | 25157   | 0,000769  | 0,459786 | Regular        |
| São Francisco do        |         | ,         | •        | Regular        |
| Para                    | 15184   | 0,001111  | 0,437502 | Rogulai        |
| Limoeiro do             | _=      |           | 0.00     | Regular        |
| Ajuru                   | 25846   | 0,005     | 0,394205 | 11050101       |
| Nova esperança          | 20350   | 0,000909  | 0,38027  | Regular        |
| 1 3                     | -       | ,         | ,        | <i>U</i>       |

| do Piriá        |      |          |          |         |
|-----------------|------|----------|----------|---------|
| Abel Figueiredo | 6905 | 0,000909 | 0,3739   | Regular |
| Peixe-boi       | 7869 | 0,003333 | 0,318474 | Regular |
| Santarém Novo   | 6248 | 0,005    | 0,271047 | Regular |

#### **APENDICE L3:**

Tabela 159: Eficiência do Estado do TOCANTINS e DMU, ano 2012.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                          | População | Eficiência<br>Total Geral<br>(eftg) | Eficiência<br>por<br>Tamanho da<br>População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|------------------------------|-----------|-------------------------------------|------------------------------------------------------------------|---------------|
|                                                  | Aguiarnopolis                | 5467      | 0,005                               | 1                                                                | Alta          |
|                                                  | Babaçulândia                 | 10439     | 0,001111                            | 1                                                                | Alta          |
|                                                  | Barra do ouro                | 4206      | 1                                   | 1                                                                | Alta          |
|                                                  | Chapada de areia             | 1345      | 1                                   | 1                                                                | Alta          |
|                                                  | Dois irmãos do<br>Tocantins  | 7145      | 1                                   | 1                                                                | Alta          |
|                                                  | Ipueiras                     | 1711      | 1                                   | 1                                                                | Alta          |
|                                                  | Itaguatins                   | 5976      | 1                                   | 1                                                                | Alta          |
|                                                  | Lizarda                      | 3716      | 1                                   | 1                                                                | Alta          |
|                                                  | Luzinópolis                  | 2713      | 0,039698                            | 1                                                                | Alta          |
|                                                  | Marianópolis do<br>Tocantins | 4507      | 1                                   | 1                                                                | Alta          |
|                                                  | Monte do Carmo               | 6946      | 1                                   | 1                                                                | Alta          |
|                                                  | Natividade                   | 9021      | 1                                   | 1                                                                | Alta          |
|                                                  | Novo jardim                  | 2504      | 1                                   | 1                                                                | Alta          |
| ТО                                               | Oliveira de<br>Fátima        | 1049      | 1                                   | 1                                                                | Alta          |
| 10                                               | Palmeirante                  | 5157      | 1                                   | 1                                                                | Alta          |
|                                                  | Ponte alta do bom<br>Jesus   | 4540      | 1                                   | 1                                                                | Alta          |
|                                                  | Presidente<br>Kennedy        | 3670      | 1                                   | 1                                                                | Alta          |
|                                                  | Recursolândia                | 3864      | 1                                   | 1                                                                | Alta          |
|                                                  | Riachinho                    | 4270      | 0,018556                            | 1                                                                | Alta          |
|                                                  | Rio sono                     | 6279      | 0,027804                            | 1                                                                | Alta          |
|                                                  | Santa Maria do<br>Tocantins  | 2995      | 1                                   | 1                                                                | Alta          |
|                                                  | Santa Terezinha do Tocantins | 2477      | 1                                   | 1                                                                | Alta          |
|                                                  | São bento do<br>Tocantins    | 4740      | 1                                   | 1                                                                | Alta          |
|                                                  | São Miguel do<br>Tocantins   | 10783     | 1                                   | 1                                                                | Alta          |
|                                                  | Marilândia do<br>Tocantins   | 3200      | 0,003333                            | 0,992314                                                         | Alta          |

| Novo acordo      | 3869   | 0,005917 | 0,969512                                | Alta    |
|------------------|--------|----------|-----------------------------------------|---------|
| Sampaio          | 4025   | 0,01     | 0,937331                                | Alta    |
| Buriti do        | 10059  | 0,005208 | 0,917928                                | Alta    |
| Tocantins        |        | ,        | ,                                       |         |
| Palmas           | 242070 | 4,37E-05 | 0,895203                                | Alta    |
| Juarina          | 2216   | 0,005    | 0,894998                                | Alta    |
| Talismã          | 2601   | 0,003333 | 0,849702                                | Alta    |
| Filadélfia       | 8549   | 0,002483 | 0,798606                                | Alta    |
| Porto nacional   | 49774  | 0,000154 | 0,750936                                | Alta    |
| Porto alegre do  | 2857   | 0,01     | 0,748404                                | Média   |
| Tocantins        |        | -,       | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |         |
| Taipas do        | 1981   | 0,01     | 0,650239                                | Média   |
| Tocantins        |        | ,        |                                         |         |
| Augustinópolis   | 16401  | 0,000417 | 0,626146                                | Média   |
| Duere            | 4597   | 0,0025   | 0,571933                                | Média   |
| Arapoema         | 6700   | 0,001667 | 0,559411                                | Média   |
| Araguatins       | 32133  | 0,000588 | 0,558413                                | Média   |
| Ananás           | 9768   | 0,001667 | 0,558295                                | Média   |
| Aragominas       | 5838   | 0,007539 | 0,524454                                | Média   |
| Colinas do       | 31675  | 0,000294 | 0,497958                                | Regular |
| Tocantins        | 31073  | 0,000294 | 0,497936                                |         |
| Axixá do         | 0242   | 0.001111 | 0.404227                                | Regular |
| Tocantins        | 9343   | 0,001111 | 0,494237                                |         |
| Lajeado          | 2838   | 0,003333 | 0,456356                                | Média   |
| Araguaçu         | 8702   | 0,00125  | 0,411294                                | Regular |
| Darcinópolis     | 5425   | 0,002    | 0,401213                                | Regular |
| Bernardo Sayao   | 4442   | 0,003333 | 0,348106                                | Regular |
| Tocantinia       | 6880   | 0,005    | 0,341594                                | Regular |
| Santa Tereza do  | 2505   | 1        | 0.210026                                | •       |
| Tocantins        | 2585   | 1        | 0,319926                                | Regular |
| Divinópolis do   | C 450  | 0.0025   | 0.216107                                | D 1     |
| Tocantins        | 6452   | 0,0025   | 0,316107                                | Regular |
| Esperantina      | 9756   | 0,01     | 0,312669                                | Regular |
| Sitio novo do    | 9097   | 0,002    | 0,29201                                 | Regular |
| Tocantins        |        | ,        | 0,27201                                 | Regular |
| Goiatins         | 12220  | 0,014084 | 0,289248                                | Regular |
| Tupiratins       | 2208   | 1        | 0,283891                                | Regular |
| Lagoa da         | 10821  | 0,000833 | 0,279009                                | Regular |
| confusão         | 10021  | 0,000033 | 0,217007                                | Regulai |
| Bom jesus do     | 3987   | 0,005    | 0,278605                                | Regular |
| Tocantins        | 3901   | 0,003    | 0,278003                                | Regulai |
| Mateiros         | 2311   | 0,005    | 0,266982                                | Regular |
| São Sebastião do | 4376   | 0,005    | 0,231268                                | Baixa   |
| Tocantins        | 4370   | 0,003    | 0,231206                                | Daixa   |
| Pau d'arco       | 4627   | 0,003333 | 0,223406                                | Baixa   |
| Santa fé do      | 6764   | 0.002222 | 0.200624                                | Baixa   |
| Araguaia         | 0/04   | 0,003333 | 0,209624                                | Daixa   |
| Araguanã         | 5157   | 0,005    | 0,148721                                | Baixa   |
| Nova Rosalandia  | 3858   | 0,005    | 0,146354                                | Baixa   |
| Jau do Tocantins | 3566   | 0,001667 | 0,081978                                | Baixa   |

#### **APENDICE M1:**

Tabela 160: Eficiência do Estado do MARANHÃO e DMU, ano 2013.

| Tabela 160: Eficiência do Estado do MARANHAO e DMU, ano 2013. |                        |                 |                      |                      |               |
|---------------------------------------------------------------|------------------------|-----------------|----------------------|----------------------|---------------|
| Unidade                                                       |                        |                 | EC:                  | Eficiência           |               |
| Federada da                                                   | DIA                    | População       | Eficiência           | por                  | C1 'C' ~      |
| Amazônia                                                      | DMU                    | 1 3             | Total Geral          | Tamanho da           | Classificação |
| Legal (UF)                                                    |                        |                 | (eftg)               | População            |               |
|                                                               |                        |                 |                      | (eftfp)              | Alta          |
|                                                               | Açailândia             | 107790          | 0,000114             | 1                    | Alla          |
|                                                               | Alto Parnaíba          | 10904           | 0,013189             | 1                    | Alta          |
|                                                               | Apicum-acu             | 17474           | 0,001667             | 1                    | Alta          |
|                                                               | Bacabeira              | 15982           | 0,001429             | 1                    | Alta          |
|                                                               | Bequimão               | 20821           | 0,0025               | 1                    | Alta          |
|                                                               | Boa vista do<br>Gurupi | 8626            | 1                    | 1                    | Alta          |
|                                                               | Cajari                 | 18751           | 0,003333             | 1                    | Alta          |
|                                                               | Cantanhede             | 21125           | 0,0025               | 1                    | Alta          |
|                                                               | Feira nova do          |                 | ,                    |                      |               |
|                                                               | Maranhão               | 8263            | 0,005633             | 1                    | Alta          |
|                                                               | Joao Lisboa            | 23450           | 0,00125              | 1                    | Alta          |
|                                                               | Maracaçumé             | 20268           | 0,002463             | 1                    | Alta          |
|                                                               | Santa Inês             | 82106           | 0,000145             | 1                    | Alta          |
|                                                               | Santa Luzia            | 75444           | 0,000263             | 1                    | Alta          |
|                                                               | Santa Luzia do         | 23256           | 0,002453             | 1                    | Alta          |
|                                                               | Paruá                  | 23230           | 0,002433             | 1                    | Alta          |
|                                                               | Santo Antônio dos      | 14289           | 0,002                | 1                    | Alta          |
| MA                                                            | Lopes                  | 17000           | ,                    | 1                    | A 14 -        |
|                                                               | São João do Soter      | 17809           | 0,005                | 1                    | Alta          |
|                                                               | São Luís               | 1053922         | 6,48E-06             | 1                    | Alta          |
|                                                               | Satubinha Tarilân dia  | 12959           | 0,005                | 1                    | Alta          |
|                                                               | Turilândia             | 24190           | 0,034901             | 1                    | Alta          |
|                                                               | Vargem grande          | 52937           | 0,000385             | 1                    | Alta          |
|                                                               | Balsas                 | 89126           | 0,000127             | 0,997107<br>0,994619 | Alta          |
|                                                               | Viana<br>Codó          | 50687<br>119641 | 0,000526<br>0,000204 | 0,994619             | Alta<br>Alta  |
|                                                               |                        | 48002           | 0,000204             | 0,973349             | Alta          |
|                                                               | Lago da pedra<br>Arari | 48002<br>28986  | 0,000417             | 0,971011             | Alta          |
|                                                               | Buriticupu             | 68626           | 0,000330             | 0,923401             | Alta          |
|                                                               | Paulo ramos            | 20514           | 0,00023              | 0,880373             | Alta          |
|                                                               | Anajatuba              | 26339           | 0,001                | 0,843978             | Alta          |
|                                                               | Rosário                | 40983           | 0,00714              | 0,832446             | Alta          |
|                                                               | Estreito               | 38932           | 0,000714             | 0,832440             | Alta          |
|                                                               | Itapecuru mirim        | 64951           | 0,0003               | 0,823013             | Alta          |
|                                                               | Pinheiro               | 80365           | 0,000337             | 0,822013             | Alta          |
|                                                               | Monção                 | 32180           | 0,000137             | 0,790257             | Alta          |
|                                                               | Alto alegre do         |                 | ,                    | ,                    |               |
|                                                               | Pindaré                | 31253           | 0,000556             | 0,782282             | Alta          |
|                                                               |                        |                 |                      |                      |               |

| Centro novo do            | 20382  | 0.002222 | 0.762600 | Alta    |
|---------------------------|--------|----------|----------|---------|
| Maranhão                  | 20382  | 0,003333 | 0,763688 | Alta    |
| Arame                     | 31867  | 0,000667 | 0,752362 | Alta    |
| Imperatriz                | 251468 | 2,44E-05 | 0,744545 | Média   |
| Vitorino freire           | 30959  | 0,000588 | 0,728723 | Média   |
| São Mateus do<br>Maranhão | 40095  | 0,0004   | 0,705208 | Média   |
| Nova Colinas              | 5120   | 0,005    | 0,682013 | Média   |
| Governador<br>Archer      | 10466  | 0,0025   | 0,679395 | Média   |
| Coroatá                   | 63154  | 0,000189 | 0,600808 | Média   |
| Paco do lumiar            | 113378 | 0,000192 | 0,528586 | Média   |
| Bacabal                   | 101851 | 0,000128 | 0,498829 | Regular |
| Palmeirândia              | 19133  | 0,003333 | 0,419561 | Regular |
| Itaipava do Grajaú        | 14084  | 0,005927 | 0,342916 | Regular |
| Pio XII                   | 21512  | 0,000833 | 0,206236 | Baixa   |
| Peri mirim                | 13956  | 0,001429 | 0,140237 | Baixa   |
| Itinga do<br>Maranhão     | 25269  | 0,000526 | 0,034128 | Baixa   |

#### **APENDICE M2:**

Tabela 161: Eficiência do Estado do PARÁ e DMU, ano 2013.

| Unidade     | Differencia do Estado C |            | ,           | Eficiência |               |
|-------------|-------------------------|------------|-------------|------------|---------------|
| Federada da |                         | População  | Eficiência  | por        |               |
| Amazônia    | DMU                     | i opulação | Total Geral | Tamanho da | Classificação |
| Legal (UF)  |                         |            | (eftg)      | População  |               |
|             |                         |            |             | (eftfp)    |               |
|             | Acara                   | 54030      | 0,000263    | 1          | Alta          |
|             | Afuá                    | 36598      | 0,000909    | 1          | Alta          |
|             | Alenquer                | 54035      | 0,000417    | 1          | Alta          |
|             | Almeirim                | 33562      | 0,000286    | 1          | Alta          |
|             | Augusto Corrêa          | 42591      | 0,000667    | 1          | Alta          |
|             | Belém                   | 1425922    | 9,76E-06    | 1          | Alta          |
|             | Chaves                  | 22029      | 1           | 1          | Alta          |
|             | Concordia do para       | 30233      | 0,000455    | 1          | Alta          |
|             | Cumaru do norte         | 11704      | 0,003703    | 1          | Alta          |
| PA          | Moju                    | 74768      | 0,000123    | 1          | Alta          |
|             | Nova Timboteua          | 14305      | 0,001429    | 1          | Alta          |
|             | Pacajá                  | 43057      | 0,000217    | 1          | Alta          |
|             | Palestina do para       | 7465       | 0,004605    | 1          | Alta          |
|             | Parauapebas             | 176582     | 4,15E-05    | 1          | Alta          |
|             | Redenção                | 79010      | 8,62E-05    | 1          | Alta          |
|             | Santa Maria das         | 18934      | 0,000731    | 1          | Alta          |
|             | barreiras               | 10934      | 0,000731    | 1          | Alla          |
|             | Terra santa             | 17614      | 0,005       | 1          | Alta          |
|             | Tucuruí                 | 103619     | 8,93E-05    | 1          | Alta          |
|             | Santarém                | 288462     | 5,92E-05    | 0,968224   | Alta          |
|             |                         |            |             |            |               |

| Primavera                   | 10432  | 0,01     | 0,96775  | Alta    |
|-----------------------------|--------|----------|----------|---------|
| Tome-acu                    | 59112  | 0.000172 | 0,955243 | Alta    |
| Baião                       | 41232  | 0,000526 | 0,931729 | Alta    |
| Ourilândia do<br>Norte      | 29547  | 0,00025  | 0,920098 | Alta    |
| Ananindeua                  | 493976 | 9,81E-06 | 0,810741 | Alta    |
| Monte alegre                | 56147  | 1        | 0,74291  | Média   |
| Braganca                    | 118678 | 0,000169 | 0,733952 | Média   |
| Juruti                      | 51483  | 0,00125  | 0,728516 | Média   |
| Garrafão do norte           | 25287  | 0,000667 | 0,727705 | Média   |
| Brejo grande do<br>Araguaia | 7285   | 0,0044   | 0,725309 | Média   |
| Dom Eliseu                  | 54602  | 0,000213 | 0,718485 | Média   |
| Mae do rio                  | 28636  | 0,0005   | 0,714532 | Média   |
| Maracanã                    | 28631  | 0,000909 | 0,697129 | Média   |
| Vigia                       | 50055  | 0,000294 | 0,64675  | Média   |
| Santo Antônio do<br>Tauá    | 28575  | 0,000526 | 0,597793 | Média   |
| Mocajuba                    | 28454  | 0,01     | 0,584531 | Média   |
| Igarapé-acu                 | 36883  | 0,0005   | 0,575656 | Média   |
| Nova Esperança<br>do Piriá  | 20528  | 0,000769 | 0,494766 | Regular |
| São Francisco do para       | 15301  | 0,001111 | 0,487168 | Regular |
| Pau d'arco                  | 5743   | 0,006529 | 0,454445 | Regular |
| Marabá                      | 251885 | 2,62E-05 | 0,431132 | Regular |
| Limoeiro do<br>Ajuru        | 26542  | 0,0025   | 0,343145 | Regular |
| Peixe-boi                   | 7889   | 0,001962 | 0,209552 | Baixa   |
| Abel Figueiredo             | 7013   | 0,001429 | 0,191027 | Baixa   |

### **APENDICE M3:**

Tabela 162: Eficiência do Estado de TOCANTINS e DMU, ano 2013.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                         | População | Eficiência<br>Total Geral<br>(eftg) | Eficiência<br>por<br>Tamanho da<br>População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|-----------------------------|-----------|-------------------------------------|------------------------------------------------------------------|---------------|
|                                                  | Ananás                      | 9952      | 0,016244                            | 1                                                                | Alta          |
|                                                  | Augustinópolis              | 17140     | 0,000526                            | 1                                                                | Alta          |
|                                                  | Babaçulândia                | 10720     | 0,00125                             | 1                                                                | Alta          |
| ТО                                               | Bom jesus do Tocantins      | 4241      | 1                                   | 1                                                                | Alta          |
|                                                  | Chapada de areia            | 1386      | 1                                   | 1                                                                | Alta          |
|                                                  | Dois irmãos do<br>Tocantins | 7319      | 0,036153                            | 1                                                                | Alta          |
|                                                  | Itaguatins                  | 6092      | 0,004906                            | 1                                                                | Alta          |
|                                                  | Itaguatins                  | 6092      | ,                                   | 1                                                                | Alta          |

| T ' 1                     | 2006         | 1        | 1        | A 1.    |
|---------------------------|--------------|----------|----------|---------|
| Lizarda                   | 3806         | 1        | 1        | Alta    |
| Luzinópolis               | 2847         | 1        | 1        | Alta    |
| Marilândia do             | 2212         | 0.005104 | 1        | Alta    |
| Tocantins                 | 3313         | 0,005184 | 1        |         |
| Oliveira de               |              |          |          | Alta    |
| Fátima                    | 1085         | 0,008237 | 1        |         |
| Ponte alta do bom         |              |          |          | Alta    |
| Jesus                     | 4654         | 1        | 1        | 11114   |
| Presidente                |              |          |          | Alta    |
| Kennedy                   | 3756         | 0,607096 | 1        |         |
| Talismã                   | 2695         | 0,00262  | 1        | Alta    |
| Tupiratins                | 2342         | 0,006179 | 1        | Alta    |
| Araguatins                | 33524        | 0,000714 | 0,974385 | Alta    |
| Aguiarnopolis             | 5820         | 0,01     | 0,925779 | Alta    |
| Araguaçu                  | 8868         | 0,0025   | 0,844203 | Alta    |
| Colinas do                |              |          |          | Alta    |
| Tocantins                 | 33078        | 0,000435 | 0,829135 | Alta    |
| Juarina                   | 2262         | 0,01     | 0,750361 | Alta    |
| Palmas                    | 257904       | 3,94E-05 | 0,747859 | Média   |
| São Bento do              |              |          |          | Média   |
| Tocantins                 | 4954         | 0,013411 | 0,745918 |         |
| Porto nacional            | 51501        | 0,000192 | 0,741614 | Média   |
| Marianópolis do           |              | ,        | ,        | Média   |
| Tocantins                 | 4730         | 0,46859  | 0,682    |         |
| Divinópolis do            |              | ,        | ,        | Média   |
| Tocantins                 | 6681         | 0,000769 | 0,660875 |         |
| Axixá do                  |              | .,       | .,       | Média   |
| Tocantins                 | 9632         | 0,00125  | 0,656508 |         |
| Santa Maria do            | ,            | 3,332    | 3,0000   | Média   |
| Tocantins                 | 3143         | 1        | 0,621769 | 1.10010 |
| Duere                     | 4718         | 0,003563 | 0,600926 | Média   |
| Novo jardim               | 2600         | 0,026757 | 0,516675 | Média   |
| São Miguel do             | 2000         | 0,020727 | 0,210072 | Média   |
| Tocantins                 | 11271        | 0,011385 | 0,513156 | Wiedia  |
| Goiatins                  | 12644        | 0,010777 | 0,495177 | Regular |
| Lajeado                   | 2956         | 0,002    | 0,461608 | Regular |
| Sitio novo do             | 2)30         | 0,002    | 0,101000 | Regular |
| Tocantins                 | 9297         | 0,003333 | 0,456686 | Regulai |
| Santa Tereza do           | 7271         | 0,005555 | 0,430000 | Regular |
| Tocantins                 | 2695         | 0,01     | 0,451939 | Regulai |
| Porto alegre do           | 2093         | 0,01     | 0,431737 | Regular |
| Torto alegie do Tocantins | 2973         | 1        | 0,404761 | Regulai |
| Riachinho                 | 4435         | 0,003333 | 0,404701 | Regular |
| Buriti do                 | 4433         | 0,003333 | 0,401313 | _       |
| Tocantins                 | 10522        | 0.021454 | 0.297507 | Regular |
|                           | 10522        | 0,021454 | 0,387507 | Dagulan |
| Nova Rosalandia           | 4018         | 0,004409 | 0,30416  | Regular |
| Monte do Carmo            | 7286         | 0,00125  | 0,290025 | Regular |
| Recursolândia             | 4029         | 0,004014 | 0,254765 | Regular |
| Santa fé do               | <b>505</b> ( | 0.000000 | 0.001550 | Baixa   |
| Araguaia                  | 7054         | 0,003333 | 0,231558 |         |

| Taipas do        |       |          |          | Baixa |
|------------------|-------|----------|----------|-------|
| Tocantins        | 2056  | 0,002144 | 0,163771 |       |
| Tocantinia       | 7158  | 0,001667 | 0,14379  | Baixa |
| Rio sono         | 6459  | 0,005204 | 0,130409 | Baixa |
| Lagoa da         |       |          |          | Baixa |
| confusão         | 11525 | 0,000833 | 0,11264  |       |
| Mateiros         | 2430  | 0,01     | 0,107278 | Baixa |
| Bernardo Sayao   | 4547  | 0,01     | 0,058679 | Baixa |
| Jau do Tocantins | 3698  | 0,003333 | 0,006738 | Baixa |
| Darcinópolis     | 5670  | 0,001667 | 0,004029 | Baixa |

## **APENDICE N1:**

Tabela 163: Eficiência do Estado do MARANHÃO e DMU, ano 2014.

|             | Eficiencia do Estado o | IO MAKANHA | to e DMO, ano |            |               |
|-------------|------------------------|------------|---------------|------------|---------------|
| Unidade     |                        |            |               | Eficiência |               |
| Federada da |                        | População  | Eficiência    | por        |               |
| Amazônia    | DMU                    | 1 opulação | Total Geral   | Tamanho da | Classificação |
| Legal (UF)  |                        |            | (eftg)        | População  |               |
|             |                        |            |               | (eftfp)    |               |
|             | Anajatuba              | 26618      | 0,003079      | 1          | Alta          |
|             | Apicum-acu             | 17712      | 0,003333      | 1          | Alta          |
|             | Arame                  | 31944      | 0,001533      | 1          | Alta          |
|             | Axixá                  | 11780      | 0,004085      | 1          | Alta          |
|             | Bacabeira              | 16276      | 0,000455      | 1          | Alta          |
|             | Bequimão               | 20837      | 0,000667      | 1          | Alta          |
|             | Boa vista do           |            |               |            | A 14 -        |
|             | Gurupi                 | 8816       | 1             | 1          | Alta          |
|             | Cajari                 | 18850      | 0,003333      | 1          | Alta          |
|             | Centro novo do         |            |               |            | Alta          |
|             | Maranhão               | 20707      | 0,0025        | 1          |               |
|             | Codó                   | 119962     | 0,000139      | 1          | Alta          |
|             | Grajau                 | 66732      | 0,000217      | 1          | Alta          |
| 3.6.4       | Itinga do              |            | ,             |            | A 1.          |
| MA          | Maranhão               | 25357      | 0,000479      | 1          | Alta          |
|             | Joao Lisboa            | 23338      | 0,001716      | 1          | Alta          |
|             | Maracaçumé             | 20549      | 0,000841      | 1          | Alta          |
|             | Paco do lumiar         | 115693     | 0,000156      | 1          | Alta          |
|             | Peri mirim             | 13989      | 0,0025        | 1          | Alta          |
|             | Santo Antônio dos      |            | ,             |            | A 1.          |
|             | Lopes                  | 14270      | 0,0025        | 1          | Alta          |
|             | São João do Soter      | 17956      | 0,001         | 1          | Alta          |
|             | São Luís               | 1064197    | 6,37E-06      | 1          | Alta          |
|             | Turilândia             | 24559      | 0,000909      | 1          | Alta          |
|             | Vargem grande          | 53918      | 0,000345      | 1          | Alta          |
|             | Viana                  | 50976      | 0,000257      | 1          | Alta          |
|             | Bacabal                | 102265     | 0,000133      | 0,917015   | Alta          |
|             | Itapecuru mirim        | 65713      | 0,000313      | 0,898721   | Alta          |
|             | Satubinha              | 13231      | 0,01865       | 0,878162   | Alta          |

| Santa Inês         | 82680  | 0,00012  | 0,865539 | Alta    |
|--------------------|--------|----------|----------|---------|
| Cantanhede         | 21299  | 0,001111 | 0,858636 | Alta    |
| Buriticupu         | 69548  | 0,00281  | 0,854836 | Alta    |
| São Mateus do      |        |          |          | A 14 o  |
| Maranhão           | 40341  | 0,000385 | 0,854741 | Alta    |
| Lago da pedra      | 48511  | 0,00037  | 0,847876 | Alta    |
| Vitorino freire    | 30937  | 0,016681 | 0,836598 | Alta    |
| Imperatriz         | 252320 | 1,98E-05 | 0,801413 | Alta    |
| Estreito           | 39805  | 0,000854 | 0,706193 | Média   |
| Alto alegre do     |        |          |          | Média   |
| Pindaré            | 31271  | 0,000769 | 0,688143 |         |
| Monção             | 32516  | 0,000714 | 0,68149  | Média   |
| Coroatá            | 63497  | 0,000167 | 0,652    | Média   |
| Arari              | 29096  | 0,000588 | 0,613312 | Média   |
| Pio XII            | 21333  | 0,001111 | 0,53427  | Média   |
| Governador         |        |          |          | Média   |
| Archer             | 10531  | 0,00313  | 0,512478 |         |
| Dom Pedro          | 22863  | 0,002    | 0,384169 | Regular |
| Santa Luzia do     |        |          |          | Regular |
| Paruá              | 24507  | 0,00125  | 0,32252  |         |
| Itaipava do Grajaú | 13579  | 0,00125  | 0,276498 | Regular |
| Alcântara          | 21652  | 0,001111 | 0,14701  | Baixa   |
|                    |        |          |          |         |

## **APENDICE N2:**

Tabela 164: Eficiência do Estado do PARÁ e DMU, ano 2014.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                          | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por<br>Tamanho da<br>População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|------------------------------|-----------|----------------------------------------------|------------------------------------------------------------------|---------------|
|                                                  | Afuá                         | 37004     | 0,001                                        | 1                                                                | Alta          |
|                                                  | Almeirim                     | 33466     | 0,000385                                     | 1                                                                | Alta          |
|                                                  | Augusto Corrêa               | 43154     | 0,001                                        | 1                                                                | Alta          |
|                                                  | Belém                        | 1432844   | 9,39E-06                                     | 1                                                                | Alta          |
|                                                  | Mae do rio                   | 28800     | 0,003169                                     | 1                                                                | Alta          |
|                                                  | Moju                         | 76096     | 0,00011                                      | 1                                                                | Alta          |
|                                                  | Palestina do para            | 7444      | 1                                            | 1                                                                | Alta          |
| PA                                               | Santa Maria das<br>barreiras | 19437     | 0,000625                                     | 1                                                                | Alta          |
|                                                  | Cumaru do norte              | 12069     | 0,000833                                     | 0,981793                                                         | Alta          |
|                                                  | Braganca                     | 120124    | 0,000213                                     | 0,970219                                                         | Alta          |
|                                                  | Portel                       | 57205     | 0,000821                                     | 0,924308                                                         | Alta          |
|                                                  | Ananindeua                   | 499776    | 1,12E-05                                     | 0,923623                                                         | Alta          |
|                                                  | Rondon do para               | 49476     | 0,000743                                     | 0,920853                                                         | Alta          |
|                                                  | Baião                        | 42513     | 0,000769                                     | 0,877467                                                         | Alta          |
|                                                  | Tome-acu                     | 59795     | 0,00025                                      | 0,860957                                                         | Alta          |
|                                                  | Primavera                    | 10458     | 0,005                                        | 0,787557                                                         | Alta          |

| Maracanã                    | 28643  | 0,000556 | 0,787461 | Alta    |
|-----------------------------|--------|----------|----------|---------|
| Alenquer                    | 54353  | 0,000588 | 0,775998 | Alta    |
| Juruti                      | 52755  | 0,001111 | 0,74592  | Média   |
| Ourilândia do norte         | 30171  | 0,000526 | 0,712868 | Média   |
| Parauapebas                 | 183352 | 0,00004  | 0,706582 | Média   |
| Vigia                       | 50622  | 0,000233 | 0,694508 | Média   |
| Dom Eliseu                  | 55513  | 0,000256 | 0,67747  | Média   |
| Barcarena                   | 112921 | 0,000135 | 0,668678 | Média   |
| Igarapé-acu                 | 37112  | 0,000385 | 0,60676  | Média   |
| Marabá                      | 257062 | 2,69E-05 | 0,514558 | Média   |
| Peixe-boi                   | 7881   | 0,003514 | 0,489674 | Regular |
| Nova Esperança<br>do Piriá  | 20596  | 0,000833 | 0,469233 | Regular |
| Garrafão do norte           | 25307  | 0,000435 | 0,33571  | Regular |
| Brejo grande do<br>Araguaia | 7258   | 0,003947 | 0,28862  | Regular |
| Limoeiro do<br>Ajuru        | 26961  | 0,001667 | 0,275564 | Regular |
| Abel Figueiredo             | 7070   | 0,002125 | 0,247518 | Baixa   |
| Pau d'arco                  | 5637   | 0,013433 | 0,068147 | Baixa   |

## **APENDICE N3:**

Tabela 165: Eficiência do Estado de TOCANTINS e DMU, ano 2014.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                            | População      | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por<br>Tamanho da<br>População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|--------------------------------|----------------|----------------------------------------------|------------------------------------------------------------------|---------------|
|                                                  | Aguiarnopolis                  | 5987           | 0,038921                                     | 1                                                                | Alta          |
|                                                  | Augustinópolis<br>Babaçulândia | 17386<br>10728 | 0,001111<br>0,023483                         | 1<br>1                                                           | Alta<br>Alta  |
|                                                  | Buriti do<br>Tocantins         | 10681          | 1                                            | 1                                                                | Alta          |
|                                                  | Chapada de areia               | 1391           | 1                                            | 1                                                                | Alta          |
|                                                  | Goiatins                       | 12730          | 1                                            | 1                                                                | Alta          |
|                                                  | Luzinópolis                    | 2896           | 1                                            | 1                                                                | Alta          |
| TO                                               | Monte do Carmo                 | 7412           | 1                                            | 1                                                                | Alta          |
|                                                  | Novo jardim                    | 2625           | 1                                            | 1                                                                | Alta          |
|                                                  | Oliveira de<br>Fátima          | 1091           | 1                                            | 1                                                                | Alta          |
|                                                  | Rio da Conceição               | 1938           | 1                                            | 1                                                                | Alta          |
|                                                  | Sitio novo do<br>Tocantins     | 9270           | 0,028208                                     | 1                                                                | Alta          |
|                                                  | Taipas do<br>Tocantins         | 2075           | 1                                            | 1                                                                | Alta          |
|                                                  | Talismã                        | 2716           | 1                                            | 1                                                                | Alta          |

| Itaguatins 6063 0,002806 0,886158        | Alta    |
|------------------------------------------|---------|
| Araguatins 33963 0,000714 0,842027       | Alta    |
| Divinópolis do 6729 0,000714 0,685972    | Alta    |
| Tocantins                                |         |
| Araguaçu 8822 0,005402 0,67995           | Alta    |
| Palmas 265409 3,52E-05 0,648251          | Alta    |
| São Miguel do 11436 0,00084 0,614718     | Alta    |
| Tocantins 0,00004 0,014718               | Ana     |
| Juarina 2253 0,015816 0,597007           | Média   |
| Ponte alta do bom 4652 0,002725 0,585877 | Média   |
| Jesus 4032 0,002723 0,383877             | Media   |
| Santa Tereza do 2729 0,005732 0,585798   | Média   |
| Tocantins 2729 0,003732 0,383798         | Media   |
| Presidente 3750 0,07469 0,522357         | Média   |
| Kennedy 0,322537                         | Media   |
| Axixá do 9669 0,001429 0,492068          | Dagulan |
| Tocantins 9669 0,001429 0,492068         | Regular |
| Lagoa do 3957 0,073476 0,458872          | Dogular |
| Tocantins 3937 0,073476 0,438872         | Regular |
| Recursolândia 4081 0,0025 0,363041       | Regular |
| Lajeado 2991 0,001667 0,340587           | Regular |
| Darcinópolis 5753 0,081558 0,304886      | Regular |
| Nova Rosalandia 4066 0,003316 0,274233   | Regular |
| Santa Maria do                           | Daima   |
| Tocantins 3198 0,009534 0,213321         | Baixa   |
| Lizarda 3801 0,034406 0,207792           | Baixa   |
| Rio sono 6473 0,016204 0,173078          | Baixa   |
| Riachinho 4478 0,005 0,126453            | Baixa   |
| Santa fé do 7144 0 002222 0 125402       | D - !   |
| Araguaia 7144 0,003333 0,125402          | Baixa   |
| Bernardo Sayao 4540 0,00816 0,115146     | Baixa   |
| Jau do Tocantins 3730 0,01 0,092569      | Baixa   |
| Lagoa da                                 | ъ.      |
| confusão 11859 0,001111 0,065253         | Baixa   |

### **APENDICE 01:**

Tabela 166: Eficiência do Estado do MARANHÃO e DMU, ano 2015.

| Unidade<br>Federada da<br>Amazônia<br>Legal (UF) | DMU                  | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por<br>Tamanho da<br>População<br>( <i>eftfp</i> ) | Classificação |
|--------------------------------------------------|----------------------|-----------|----------------------------------------------|------------------------------------------------------------------|---------------|
|                                                  | Alcântara            | 21659     | 0,001429                                     | 1                                                                | Alta          |
| MA                                               | Arame                | 32015     | 0,001522                                     | 1                                                                | Alta          |
| MA                                               | Cajari               | 18943     | 0,003333                                     | 1                                                                | Alta          |
|                                                  | Governador<br>Archer | 10591     | 1                                            | 1                                                                | Alta          |

| Itaipava do Grajaú | 15609   | 1        | 1        | Alta    |
|--------------------|---------|----------|----------|---------|
| Paco do lumiar     | 117877  | 0,000167 | 1        | Alta    |
| Pio XII            | 21164   | 0,001    | 1        | Alta    |
| Santa Luzia do     |         |          |          | A 1.    |
| Paruá              | 24663   | 0,000714 | 1        | Alta    |
| São João batista   | 20235   | 0,001111 | 1        | Alta    |
| São João do Soter  | 18095   | 0,001111 | 1        | Alta    |
| São Mateus do      |         |          |          | A 1.    |
| Maranhão           | 40574   | 0,000345 | 1        | Alta    |
| Viana              | 51249   | 0,000256 | 1        | Alta    |
| São Luís           | 1073893 | 6,88E-06 | 0,986767 | Alta    |
| Estreito           | 40629   | 0,000294 | 0,918055 | Alta    |
| Itapecuru mirim    | 66433   | 0,000313 | 0,885318 | Alta    |
| Bacabeira          | 16553   | 0,000345 | 0,878403 | Alta    |
| Buriticupu         | 70417   | 0,000238 | 0,873427 | Alta    |
| Lago da pedra      | 48992   | 0,00037  | 0,831876 | Alta    |
| Alto alegre do     |         |          |          | A 14 o  |
| Pindaré            | 31287   | 0,00084  | 0,805422 | Alta    |
| Imperatriz         | 253123  | 2,31E-05 | 0,660007 | Média   |
| Coroatá            | 63821   | 0,000132 | 0,654584 | Média   |
| Peri mirim         | 14019   | 0,00125  | 0,472867 | Regular |

# **APENDICE 02:**

Tabela 167: Eficiência do Estado do PARÁ e DMU, ano 2015.

| Unidade<br>Federada da | DMU                        | População | Eficiência por |            |               |
|------------------------|----------------------------|-----------|----------------|------------|---------------|
| Amazônia               |                            |           | Total Geral    | Tamanho da | Classificação |
| Legal (UF)             |                            |           | (eftg)         | População  |               |
|                        |                            |           |                | (eftfp)    | A 14 -        |
| PA                     | Afuá                       | 37398     | 0,000714       | 1          | Alta          |
|                        | Augusto Corrêa             | 43700     | 0,000833       | 1          | Alta          |
|                        | Baião                      | 43757     | 0,0004         | 1          | Alta          |
|                        | Belém                      | 1439561   | 9,89E-06       | 1          | Alta          |
|                        | Cametá                     | 130868    | 0,000208       | 1          | Alta          |
|                        | Cumaru do norte            | 12423     | 0,00125        | 1          | Alta          |
|                        | Moju                       | 77385     | 0,000118       | 1          | Alta          |
|                        | Nova Esperança<br>do Piriá | 20663     | 0,000714       | 1          | Alta          |
|                        | Palestina do para          | 7424      | 0,001122       | 1          | Alta          |
|                        | Primavera                  | 10485     | 0,003333       | 1          | Alta          |
|                        | Tome-acu                   | 60456     | 0,000175       | 0,952906   | Alta          |
|                        | Parauapebas                | 189921    | 4,72E-05       | 0,843631   | Alta          |
|                        | Rondon do para             | 49977     | 0,000182       | 0,802396   | Alta          |
|                        | Juruti                     | 53989     | 0,000625       | 0,784383   | Alta          |
|                        | Mae do rio                 | 28959     | 0,008302       | 0,75167    | Alta          |
|                        | Ananindeua                 | 505404    | 9,63E-06       | 0,738155   | Média         |
|                        | Ourilândia do              | 30776     | 0,000385       | 0,728593   | Média         |
|                        |                            |           |                |            |               |

| Norte           |        |          |          |         |
|-----------------|--------|----------|----------|---------|
| Maracanã        | 28656  | 0,001429 | 0,724021 | Média   |
| Pau d'arco      | 5535   | 0,001111 | 0,650551 | Média   |
| Braganca        | 121528 | 0,000159 | 0,637143 | Média   |
| Igarapé-acu     | 37333  | 0,0005   | 0,50399  | Média   |
| Peixe-boi       | 7874   | 0,005026 | 0,466526 | Regular |
| Abel Figueiredo | 7126   | 0,0025   | 0,204577 | Baixa   |

### **APENDICE 03:**

Tabela 168: Eficiência do Estado de TOCANTINS e DMU, ano 2015.

| Tabela 108: Efficiencia do Estado de TOCANTINS e DIVIO, ano 2013. |                             |           |                                              |                                              |               |  |
|-------------------------------------------------------------------|-----------------------------|-----------|----------------------------------------------|----------------------------------------------|---------------|--|
| Unidade<br>Federada da<br>Amazônia<br>Legal (UF)                  | DMU                         | População | Eficiência<br>Total Geral<br>( <i>eftg</i> ) | Eficiência<br>por<br>Tamanho da<br>População | Classificação |  |
|                                                                   |                             | C1.40     | 4                                            | (eftfp)                                      | Alta          |  |
|                                                                   | Aguiarnopolis               | 6149      | 1                                            | 1                                            |               |  |
|                                                                   | Augustinópolis              | 17627     | 0,000667                                     | 1                                            | Alta          |  |
|                                                                   | Bernardo Sayao              | 4532      | 1                                            | 1                                            | Alta          |  |
|                                                                   | Divinópolis do<br>Tocantins | 6777      | 0,0025                                       | 1                                            | Alta          |  |
|                                                                   | Juarina                     | 2245      | 1                                            | 1                                            | Alta          |  |
|                                                                   | Lizarda                     | 3796      | 1                                            | 1                                            | Alta          |  |
|                                                                   | Nova Rosalandia             | 4113      | 1                                            | 1                                            | Alta          |  |
|                                                                   | Novo jardim                 | 2650      | 1                                            | 1                                            | Alta          |  |
| TO                                                                | Oliveira de<br>Fatima       | 1098      | 1                                            | 1                                            | Alta          |  |
|                                                                   | Presidente<br>Kennedy       | 3744      | 1                                            | 1                                            | Alta          |  |
|                                                                   | Sitio novo do<br>Tocantins  | 9243      | 1                                            | 1                                            | Alta          |  |
|                                                                   | Taipas do<br>Tocantins      | 2094      | 1                                            | 1                                            | Alta          |  |
|                                                                   | Talismã                     | 2737      | 1                                            | 1                                            | Alta          |  |
|                                                                   | Ponte alta do bom<br>Jesus  | 4649      | 0,015835                                     | 0,970571                                     | Alta          |  |
|                                                                   | Itaguatins                  | 6035      | 0,005                                        | 0,648502                                     | Média         |  |
|                                                                   | São Miguel do<br>Tocantins  | 11597     | 0,001                                        | 0,637588                                     | Média         |  |
|                                                                   | Santa Tereza do Tocantins   | 2762      | 0,003018                                     | 0,628318                                     | Média         |  |
|                                                                   | Palmas                      | 272726    | 3,11E-05                                     | 0,560468                                     | Média         |  |
|                                                                   | Araguatins                  | 34392     | 0,001393                                     | 0,545913                                     | Média         |  |
|                                                                   | Darcinópolis                | 5833      | 0,009976                                     | 0,472008                                     | Regular       |  |
|                                                                   | Buriti do<br>Tocantins      | 10837     | 0,0025                                       | 0,356726                                     | Regular       |  |
|                                                                   | Monte do Carmo              | 7535      | 0,001667                                     | 0,273081                                     | Regular       |  |
|                                                                   | Recursolândia               | 4132      | 0,002635                                     | 0,239325                                     | Baixa         |  |

| Rio sono             | 6486  | 0,003333 | 0,212757 | Baixa |
|----------------------|-------|----------|----------|-------|
| Riachinho            | 4520  | 1        | 0,145546 | Baixa |
| Lagoa da<br>Confusão | 12184 | 0,000556 | 0,116755 | Baixa |